EECS 151/251 A Discussion 4 Feb 9, 2024

Content

- K-maps
- Converting to NANDs and NORs
- FSMs
- Problems

Karnaugh Maps

- Tools to simplify Boolean Expressions
- Based on Uniting Theorem:

 $- xy' + xy = x (y' + y) = x$

- Go from function of 2 variables \rightarrow 1
- Rewrite truth table as a grid where adjacent cells have one variable change $(00->01->11->10)$
	- $-$ Note that the standard $00->01->10->11$ does not work since 01->10 flips 2 variables
- Adjacent 1s represent product terms

SOP K-maps

- Groups of 1s must be dimensions of $2^{\wedge}n$ (1x1, 2x2, 2x1, 4x2, etc..)
- Result in SOP expression
- Note that edges are adjacent!

ab 00 01 11 10 $\mathsf C$ 0 Ω O

 $f = b'c' + ac$

POS K-Maps

- Find groups of 0 with same rules
- If constant terms are 0, use them, if constant terms are 1 use their complement
- Create POS expression
- How does this relate to DeMorgan's Law?

 $f = (b' + c + d)(a' + c + d')(b + c + d')$

POS K-Map intuition

- You are just inverting the SOP expression for F'!
- When you invert SOP, you get POS of the inversion
	- $-$ SOP: bc'd' + ac'd + bc'd
	- $-$ Invert: (bc'd' + ac'd + $bc'd)' =$ $(bc'd')'(ac'd)'(bc'd)' =$
	- $(b' + c + d)(a' + c + d')$ $+ c + d'$

 $f = (b' + c + d)(a' + c + d')(b + c + d')$

Don't Cares

- You can circle as 0s or 1s, which ever lets you make bigger and fewer blocks in general!
- $Z = d'$

Converting to NANDs/NORs

• Add bubbles everywhere (inputs and outputs) when converting from ANDs to Ors (DeMorgan's)

Finite State Machines

- Ways to design Sequential Circuits (Universal)
- Moore: Output based only on current state
- Mealy: Output based on current state and input
- Transition between states with incoming input
- We will talk about how to implement them with logic circuits next week

Problem 1: K-Maps

1. Given the following truth table, first construct a Karnaugh map.

a	\bf{b}	$\mathbf c$	$\mathbf d$	\mathbf{y}
$\overline{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{1}$
$\mathbf{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\mathbf X$
$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$
$\overline{0}$	$\overline{0}$	$\mathbf{1}$		$\mathbf{1}$
$\overline{0}$		$\boldsymbol{0}$	$\begin{matrix}1\0\end{matrix}$	$\overline{0}$
$\overline{0}$	$\frac{1}{1}$	$\overline{0}$	$\mathbf{1}$	
	$\mathbf{1}$	$\mathbf{1}$	$\overline{0}$	$\begin{array}{c} \mathbf{X} \\ \mathbf{0} \end{array}$
$\begin{matrix} 0 \\ 0 \end{matrix}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\overline{0}$	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{1}$
$\mathbf{1}$	$\overline{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{0}$
$\mathbf{1}$		$\mathbf{1}$	$\ddot{\mathbf{0}}$	$\overline{0}$
$\overline{1}$	$\begin{matrix} 0 \\ 0 \end{matrix}$	$\mathbf{1}$	$\mathbf{1}$	\overline{X}
	$\mathbf{1}$	$\boldsymbol{0}$	$\overline{0}$	$\overline{0}$
$\frac{1}{1}$	$\mathbf{1}$	$\boldsymbol{0}$	$\mathbf{1}$	\mathbf{X}
$\mathbf 1$	$\mathbf{1}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$
$\mathbf 1$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf 1$	$\overline{\text{X}}$

Table 1: Truth Table

- 2. Using the Karnaugh Map, give the most simplified SOP expression to describe truth table.
- 3. With the same Karnaugh Map, give the most simplified POS expression to describe the truth table.

1. Karnaugh Map

 $y = cd + b'c'd'$

3.

 $\overline{c}d\quad cd\quad c\overline{d}$

 $y = (a' + d')(b' + c)(c' + d)$

Problem 2: Converting to a NAND circuit

- 1. From the previous SOP expression, please give the AND/OR circuit diagram described by the expression.
- 2. Convert the previous diagram to a circuit with only NANDs and Inverters.

$$
y=cd+b'c'd'
$$

Problem 3: State Machine to Detect 3 Divisibility

Draw the State Diagram (Moore) which takes as input a single bit of an n-bit binary number, and outputs whether the number is divisible by 3. The first bit received will be the MSB. For example for the bit stream $1,1,0,0,1,0,1,0,1$ (receiving from the left first) we will have:

