EECS 151/251 A
Discussion 3

Feb 2, 2024

Content

 FPGA Architecture
« ASIC Architecture

« Shift Registers

* Verilog Testbenches
* Problems

Berkeley

UNIVERSITY OF CALIFORNIA

FPGA Architecture

* Lookup Tables (LUT) are the fundamental building block
— The inputs index a table loaded with values
— Programming write the LUTs

— Many variations (ex. LUT-2, LUT-4, LUT-6 (most common),
LUT-8 (rare))

« Logic block (CLB) connected by programmable interconnect
— Programming configures MUXes

LogcBlock [- magmert
Neuts_ |t 4LUT %— QUTPUT
’ 0

\ Function defined by
* 4-input "look up table" configuration bit-stream

Berkeley

UNIVERSITY OF CALIFORNIA

LUT Mapping

« Process assigning logical functions to LUTs

« Efficiently mapping is important, but placement is
even more critical

« Considering the Boolean function: AB + BC + AC + D

— This maps to six LUT-2s
— Or, a single LUT-4

Berkeley

UNIVERSITY OF CALIFORNIA

ASIC Architecture

« Transistors at this level

« Standard cells are pre-made logic cells
— All have the same height
— Can have different widths

 The die area is composed of rows and standards cells
are placed in row efficiently to make routing easier.

Cell programming & inter-connect M7 (thick)

Well Contact
Clock Rail under Power Rail

(not typical

VIA2

Power
Rails in

[|
M2
[| o viat
d L=l "
B e B S

I NAND2 Flip-flop
p-substrate

Shift Registers

« Daisy-chained registers

« Each register can be multibit

« A fundamental hardware structure
— Common in serial RX and TX interfaces
— LFSR (pseudo-random number generator)

« Shift registers with 1-bit width can be implemented
with a single multibit register

QA QB QC QD

SI—DQ|DQ|DQ’DQJ

Berkeley

UNIVERSITY OF CALIFORNIA

Testbenches (Quickly)

« Testbenches are Verilog modules which instantiate your DUT to
drive inputs and verify outputs

— Testbenches have no inputs or outputs
« File name should match module name
« Use delays (#) or timing event @(posedge clk) to sequence events
« Things to have:

1. Simulated clock (should be reg)

2. A reset signal (should be reg)

3. Initial block (always assert reset first), several test cases

4. Instantiated DUT

5. Process to verify outputs or print to console ($display)

Berkeley

UNIVERSITY OF CALIFORNIA

Problems

* First, we will work on each problem alone for 5ish
minutes

« Then break into groups of 3-4 and discuss your
solutions for 5 minutes

* I'll have one the groups share their answer and we’ll
go over as a class

Berkeley

UNIVERSITY OF CALIFORNIA

Problem 1:

Berkeley

UNIVERSITY OF CALIFORNIA

Problem 1: LUTs and Functions

Lookup Tables (LUTs) are the fundamental building blocks of FPGA architectures. A LUT-N
can implement any N input logic function (ex. a LUT-4 can implement any logic function with
four logical inputs). On an FPGA, LUTs can be connected together through special routing to
implement functions with even more inputs. Consider the following arrangement of five LUT-4
blocks:

LUT-4

L1

LuT4

[111

LUT4 pb—

LUT4

L1

LuT-4

[111

How many logic functions can this chain of LUT-4’s implement?

Problem 1: Solution

Let’s break it down. A function is a logical expression. How many functions can single
bit implement? 4. Bit A can be either 0 or 1, and can map to 0 or 1.

1. A=0

2. A=1

3. A= 0

4. A—1
From this we can establish a general rule: 22" for a LUT-N. Therefore, each LUT-4 can

implement 922" — 916 — 65536 functions. Since the inputs to the last LUT-4 is another LUT-4,
each bit represents 22" functions. Therefore, the total number of functions is (216)5.

Berkeley

UNIVERSITY OF CALIFORNIA

Problem 2:

Problem 2: Self Starting Ring Counter

A ring counter is a special counter composed of flip-flops daisy-chained together to form a shift
register and the output of the last flip-flop is connected to the output of the first. Below is a variant
of self starting ring counter. (Note: the last flip-flops output is not the input to the first, but it’s
close enough to call it a ring counter :-)). It is self starting because there is no reset. The counter
will reset itself! The counter is read out such that the first register is the LSb of the count value.

FF FF FF b9 FF FF

;}:}

1. How does this self-initialize itself?
2. What type of counter is this?

3. Assume the register are initialized as 0, 1, 0, 1, 0. Create a table showing clock cycle, input
to the chain, value of each register. Provide a waveform diagram for the first 10 cycles after
initialization.

4. How does the circuit behave in steady state (steady state means after hundreds of cycle)?

5. This behavior can be create using a regular incrementing counter and a decoder. Write Verilog
for this implementation.

UNIVERSITY OF CALI

Problem 2: Solution

Berkel

UNIVERSITY OF CALIFORNI

The NOR gate takes as input all except the last flip-flop in the shift register. Therefore, the
NOR output is 1 only if all of the first four registers are zero. Since, the NOR output is the
input of the shift register, wherever the previous condition occurs the shift register is initialize
with a 1. Note this occurs regardless of the value in the last flip-flop.

1. The input to the shift register is 1 when the first four flip-flops are zero.

2. A one-hot counter

3.
Cycle | NOR Output | Reg0 | Regl | Reg2 | Reg3 | Regd
0 0 1 1 0 1 0
1 0 0 1 1 0 1
2 0 0 0 1 1 0
3 0 0 0 0 1 1
4 1 0 0 0 0 1
5 0 1 0 0 0 0
6 0 0 1 0 0 0
7 0 0 0 1 0 0
8 0 0 0 0 1 0
9 1 0 0 0 0 1
10 0 1 0 0 0 0

4. It counts in powers of two: 1, 2, 4, 8, 16, 1, 2, 4, ...

Problem 2: Solution

5. module ring cnt(
input clk ,
output reg [4:0] cnt);

integer j; // Used for bit reversal

wire [4:0] reg_in; // Input to register
reg [5:0] reg_out; // Output of register

// Create shift register
genvar 1
generate
for (i=0; i<5; i=i+1) begin
REGISTER regX (.clk(clk),
.d([reg_ini]),
.q(reg_out[i]));
end
endgenerate

// Procedural Assignment
always @(%) begin
for (j=0:j <5;j=j+1) begin
cnt[j] = reg_out[d—j];
end
end

// Signal Assignment
assign reg_in = {reg_out[3:0], ~|reg_out[3:0]};

Bﬁrk endmodule

UNIVERSITY OF CA

Problem 3:

Problem 2: Decoder-Based Multiplexer

(a) Design a 4-to-1 multiplexer using one of the decoders you designed above. The select signals
must be input to the decoder and must not be used anywhere else. Provide an exhaustive
test.

(b) What could be a potential benefit of using this decoder-based multiplexer against the following
design:

s[0]
in[0]
in[1] s[1]
s[0] j out
in[2]
in[3]

Berkeley

UNIVERSITY OF CALIFORNIA

Problem 3: Solution

Solution:

(a) Diagram:

S
1
S
Decoder
x[3]x[2]x[1] x[0]

in[0]—

in[1]—

in[2]—

in[3]—

B3
B

Problem 3: Solution

Design:
“include "decoder.v"
module multiplexer(

input [1:0] s,
input [3:0] in,

output out
);
wire [3:0] X;
wire t0, t1, t2, t3;

decoderl dci1(.s(s), .x(x));

and(t0, in[0], x[0]);
and(t1, in[1], x[1]);
and(t2, in[2], x[2]);
and(t3, in[3], x[3]);
or(out, t0, ti1, t2, t3);

endmodule

Berkeley

UNIVERSITY OF CALIFORNIA

Problem 3: Solution

module multiplexer_tb;
reg [1:0] s;
reg [3:0] in;
reg expected;
wire out;

// loop wariables
integer i, j;

// instantiate duts
multiplexer mux1(.s(s), .in(in), .out(out));

// expected outputs
always @(*) begin
case (s)
2'b00: expected = in[0];
2'b01: expected = in[1];
2'b10: expected = in[2];
2'b11: expected = in[3];
default: expected = 1'bx;
endcase
end

// begin test
initial begin
$dumpfile ("dump.vecd");

$dumpvars;
for(j = 0; j < 16; j = j + 1) begin
in = j;
for(i = 0; i < 4; i =i + 1) begin
s = i;
#1;

$display("s: %b, in: %b, out: %b, expected: %b",

Berkeley

UNIVERSITY OF CALIFORNIA

s, in, out, expected);
// Break early if failed
if (out !== expected) begin
$display("FAILED, expected %b, got %b",
expected, out);
$finish();
end
end
end
$display ("ALL TESTS PASSED!");
$finish();
end
endmodule

