
EECS 151/251A Discussion 3

Feburary 2, 2024

Problem 1: LUTs and Functions

Lookup Tables (LUTs) are the fundamental building blocks of FPGA architectures. A LUT-N
can implement any N input logic function (ex. a LUT-4 can implement any logic function with
four logical inputs). On an FPGA, LUTs can be connected together through special routing to
implement functions with even more inputs. Consider the following arrangement of five LUT-4
blocks:

How many logic functions can this chain of LUT-4’s implement?

Version: 1 - 2024-02-05 04:21:27Z

EECS 151/251A Discussion 3 2

Solution:
Let’s break it down. A function is a logical expression. How many functions can single
bit implement? 4. Bit A can be either 0 or 1, and can map to 0 or 1.

1. A → 0

2. A → 1

3. A → 0

4. A → 1

From this we can establish a general rule: 22n for a LUT-N. Therefore, each LUT-4 can
implement 224 = 216 = 65536 functions. Since the inputs to the last LUT-4 is another LUT-4,
each bit represents 224 functions. Therefore, the total number of functions is (216)5.

Challenge yourself.

1. How many functions can be produced if the last LUT-4 is removed and the outputs are
concatenate? (216)4

2. How many functions can be produced for the following circuit:

The answer is 2232 .

Problem 2: Self Starting Ring Counter

A ring counter is a special counter composed of flip-flops daisy-chained together to form a shift
register and the output of the last flip-flop is connected to the output of the first. Below is a variant
of self starting ring counter. (Note: the last flip-flops output is not the input to the first, but it’s
close enough to call it a ring counter :-)). It is self starting because there is no reset. The counter
will reset itself! The counter is read out such that the first register is the LSb of the count value.

Version: 1 - 2024-02-05 04:21:27Z

EECS 151/251A Discussion 3 3

1. How does this self-initialize itself?

2. What type of counter is this?

3. Assume the register are initialized as 0, 1, 0, 1, 0. Create a table showing clock cycle, input
to the chain, value of each register. Provide a waveform diagram for the first 10 cycles after
initialization.

4. How does the circuit behave in steady state (steady state means after hundreds of cycle)?

5. This behavior can be create using a regular incrementing counter and a decoder. Write Verilog
for this implementation.

Solution:
The NOR gate takes as input all except the last flip-flop in the shift register. Therefore, the
NOR output is 1 only if all of the first four registers are zero. Since, the NOR output is the
input of the shift register, wherever the previous condition occurs the shift register is initialize
with a 1. Note this occurs regardless of the value in the last flip-flop.

1. The input to the shift register is 1 when the first four flip-flops are zero.

2. A one-hot counter

3.
Cycle NOR Output Reg0 Reg1 Reg2 Reg3 Reg4
0 0 1 1 0 1 0
1 0 0 1 1 0 1
2 0 0 0 1 1 0
3 0 0 0 0 1 1
4 1 0 0 0 0 1
5 0 1 0 0 0 0
6 0 0 1 0 0 0
7 0 0 0 1 0 0
8 0 0 0 0 1 0
9 1 0 0 0 0 1
10 0 1 0 0 0 0

Version: 1 - 2024-02-05 04:21:27Z

EECS 151/251A Discussion 3 4

4. It counts in powers of two: 1, 2, 4, 8, 16, 1, 2, 4, ...

5. module r ing_cnt (
input c lk ,
output reg [4 : 0] cnt) ;

integer j ; // Used f o r b i t r e v e r s a l

wire [4 : 0] reg_in ; // Input to r e g i s t e r
reg [5 : 0] reg_out ; // Output o f r e g i s t e r

// Create s h i f t r e g i s t e r
genvar i ;
generate

for (i =0; i <5; i=i +1) begin
REGISTER regX (. c l k (c l k) ,

. d ([r eg_in i]) ,

. q (reg_out [i])) ;
end

endgenerate

// Procedura l Assignment
always @(∗) begin

for (j =0; j <5; j=j+1) begin
cnt [j] = reg_out [4− j] ;

end
end

// S i gna l Assignment
assign reg_in = {reg_out [3 : 0] , ~ | reg_out [3 : 0] } ;

endmodule

Version: 1 - 2024-02-05 04:21:27Z

EECS 151/251A Discussion 3 5

Problem 3: Decoder-Based Multiplexer

(a) Design a 4-to-1 multiplexer using one of the decoders you designed above. The select signals
must be input to the decoder and must not be used anywhere else. Provide an exhaustive
test.

(b) What could be a potential benefit of using this decoder-based multiplexer against the following
design:

in[1]
in[0]

out

s[1]

s[0]

0

1

0

1

in[3]
in[2]

s[0]

0

1

Solution:
(a) Diagram:

in[3]

in[2]

2

Decoder

s

in[1]

out

in[0]

x[0]

s

x[1]x[2]x[3]

Version: 1 - 2024-02-05 04:21:27Z

EECS 151/251A Discussion 3 6

Design:

`include " decoder . v "

module mul t ip l exe r (
input [1 : 0] s ,
input [3 : 0] in ,
output out
) ;

wire [3 : 0] x ;
wire t0 , t1 , t2 , t3 ;

decoder1 dc1 (. s (s) , . x (x)) ;

and(t0 , in [0] , x [0]) ;
and(t1 , in [1] , x [1]) ;
and(t2 , in [2] , x [2]) ;
and(t3 , in [3] , x [3]) ;
or (out , t0 , t1 , t2 , t3) ;

endmodule

Version: 1 - 2024-02-05 04:21:27Z

EECS 151/251A Discussion 3 7

Testbench:

module mult ip lexer_tb ;
reg [1 : 0] s ;
reg [3 : 0] in ;
reg expected ;
wire out ;

// loop v a r i a b l e s
integer i , j ;

// i n s t a n t i a t e duts
mul t ip l exe r mux1 (. s (s) , . in (in) , . out (out)) ;

// expec ted ou tpu t s
always @(∗) begin

case (s)
2 ' b00 : expected = in [0] ;
2 ' b01 : expected = in [1] ;
2 ' b10 : expected = in [2] ;
2 ' b11 : expected = in [3] ;
default : expected = 1 'bx ;

endcase
end

// beg in t e s t
i n i t i a l begin

$dumpfi le ("dump . vcd ") ;
$dumpvars ;
for (j = 0 ; j < 16 ; j = j + 1) begin

in = j ;
for (i = 0 ; i < 4 ; i = i + 1) begin

s = i ;
#1;
$display (" s : ␣%b , ␣ in : ␣%b , ␣out : ␣%b , ␣ expected : ␣%b" ,

s , in , out , expected) ;
// Break e a r l y i f f a i l e d
i f (out !== expected) begin

$display ("FAILED, ␣ expected ␣%b , ␣ got ␣%b" ,
expected , out) ;

$finish () ;
end

end
end
$display ("ALL␣TESTS␣PASSED! ") ;
$finish () ;

end

Version: 1 - 2024-02-05 04:21:27Z

EECS 151/251A Discussion 3 8

endmodule

(b) Smaller delay (fewer logic levels) from data input to output, trading off delay from select
signals to output.

Version: 1 - 2024-02-05 04:21:27Z

