
EECS 151/251A Discussion 5

Monday 4th March, 2024

Problem 1. FSM Design (HW4 Spring 4)

Consider a simple dishwasher that has an option for a quick rinse cycle or a full wash cycle. The
dishwasher will first rinse the dishes with hot water, then decide whether to wash with detergent or
skip straight to drying depending on the setting. If you open the door of the dishwasher prematurely,
a door switch will trigger a reset and the dishwasher will stop and go back to the initial state. A
timer raises a time flag when the dishwasher is ready to move to the next state. The dishwasher
has three outputs: water, detergent, heat. During the rinse cycle, it will request water. During
the wash cycle, it will request water and detergent. During the dry cycle it will request only heat.
Here is a conceptual state transition diagram for the dishwasher:

For each of the following scenarios, please provide:

• A state transition diagram with the state names and encoding (e.g. STOP (00)), as well as
outputs labeled appropriately.

• A circuit diagram of the state machine. The state machine will receive the inputs reset,
start, quick, and time. The state machine must have the outputs water, detergent, and
heat. You may use logic gates of 4 inputs or fewer as well as multiplexers to implement your
next state logic.

• A quick (1-2 sentence) summary of your design process and decisions.

Design the FSM for each of these scenarios:

1



(a) Binary-encoded Moore Machine

(b) Binary-encoded Mealy Machine

(c) One-hot Moore Machine

(d) One-hot Mealy Machine

2



Problem 1: Extra: FSMs in Verilog

FSMs are ubiquitous in hardware. Being able to write a FSM in verilog is a necessary skill. For
an educational opportunity, we present a real word use of a FSM: power up sequence for a system.
Electronic systems often can not instantly power on. In fact, complex have a specific sequence
powering up different subsystems in order to ensure correct functionality and prevent damage to
the system. An example could be a drone. Below we example the two popular styles of writing an
FSM in Verilog. Furthermore, we demonstrate the different between the Moore and Mealy. Our
simplified power up sequnce has the following specification:

1. The FSM is idle when the system is off

2. The power up sequence begins when the pwr on signal is asserted

3. Before the rails are brought up (powered up) one must wait a full clock cycle

4. Once up, the FSM will being to power down with the pwr off signal is asserted

5. The system has 3 rails which are brought up when the corresponding output is asserted

3



Below is the older style of writing an FSM with the combinational and sequential logic separately.
Note this is also a Moore state machine.

/*

* This module is a Moore FSM which style where sequential

* and combinational logic are keep separate. A single register

* represents the sequential logic. The always block is completely

* combinational using blocking statements. This was common back in

* the day for clarity and to reduce ambiguity for the synthesis tool.

* CAD tools are much improved and there is no advantage to

* writing FSMs like this , it is purely a stylistic decision.

*/

module power_on_seq_moore(

input clk ,

input rst ,

//

input pwr_on ,

input pwr_off ,

//

output rail_1 ,

output rail_2 ,

output rail_3 );

// Constants

// State Variables

localparam IDLE =0;

localparam WARM_UP =1;

localparam VDD_ON =3;

localparam PWR_DOWN =2;

// Signals

reg [1:0] nxt_state;

wire [1:0] state;

// Instantiations

REGISTER_R #(2) state_reg (.clk(clk),

.rst(rst),

.ce(1’b1),

.d(nxt_state),

.q(state ));

always @(*) begin

rail_1 = 1’b0;

rail_2 = 1’b0;

rail_3 = 1’b0;

nxt_state = IDLE;

case (state)

// Idle state

IDLE: begin

if (pwr_on == 1’b1) begin

nxt_state = WARM_UP;

end

4



end

// One cycle wait state

WARM_UP: nxt_state = VDD_ON;

// Bring up Rails

VDD_ON: begin

if (pwr_off == 1’b1) begin

nxt_state = PWR_DOWN;

end

rail_1 = 1’b1;

rail_2 = 1’b1;

rail_3 = 1’b1;

end

// Bring down rails

PWR_DOWN: begin

nxt_state = IDLE

rail_1 = 1’b0;

rail_2 = 1’b0;

rail_3 = 1’b0;

end

default : begin

nxt_state = IDLE;

rail_1 = 1’b0;

rail_2 = 1’b0;

rail_3 = 1’b0;

end

endcase

end

endmodule

5



Below is the more modern style of writing an FSM with a single process with combinational and
sequential logic together. Note this is also a Mealy state machine.

/*

* This module is a mealy FSM which style where there is a

* single clocked process containing both sequential and

* combinational. Note this style uses inferred registers

* which is not allowed in the course. This is for

* educational purposes only.

*/

module power_on_seq_mealy(

input clk ,

input rst ,

//

input pwr_on ,

input pwr_off ,

//

output rail_1 ,

output rail_2 ,

output rail_3 );

// Constants

// State Variables

localparam IDLE =0;

localparam WARM_UP =1;

localparam VDD_ON =3;

// Signals

reg [1:0] state;

always @(posedge clk) begin

if (rst == 1’b1) begin

state = IDLE

rail_1 = 1’b0;

rail_2 = 1’b0;

rail_3 = 1’b0;

end else begin

case (state)

// Idle state

IDLE: begin

if (pwr_on == 1’b1) begin

state = WARM_UP;

end

end

// One cycle wait state

WARM_UP: begin

state = VDD_ON;

rail_1 = 1’b1;

rail_2 = 1’b1;

rail_3 = 1’b1;

6



end

// Bring up Rails

VDD_ON: begin

if (pwr_off == 1’b1) begin

state = IDLE;

end

// Bring down rails

rail_1 = 1’b0;

rail_2 = 1’b0;

rail_3 = 1’b0;

end

default : begin

state = IDLE;

rail_1 = 1’b0;

rail_2 = 1’b0;

rail_3 = 1’b0;

end

endcase

end

end

endmodule

7


	Extra: FSMs in Verilog

