
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS151/251A J. Wawrzynek
Spring 2023 3/9/23

Exam 1

Name:

Student ID number:

Class (EECS151 or EECS251A):

Before solving the problems, write your student ID number on all pages.

You have three hours to take the exam. This exam comprises a set of questions with 1 point
per approximate expected minute of completion—with a total of 100 points.

For each problem if you find yourself taking excessive time to work out a solution consider
skipping the problem or a fresh approach. Also, start by answering the easier questions and
then move on to the more difficult ones.

No calculators, phones, or other devices allowed.

Neatness counts. We will deduct points if we need to work hard to understand your answer.

1

Student ID number:

1 Dennard Scaling [3 pts]

With Dennard scaling we scale dimensions, and Vdd by a factor of 1/k (k > 1), and doping
concentrations by k. For a given design and layout (say a microprocessor, for instance), what
would be the effect of Dennard scaling on area, maximum clock frequency, and power, in terms
of k?

Solution:

Cost: 1/k2, Maximum clock frequency: k, Power: 1/k2.

2 Pareto Optimality [2 pts]

Your project partner gives you two designs for a 32-bit adder circuit and claims that they are
Pareto Optimal with respect to cost/performance:

• Circuit A comprises 384 logic gates and has delay of 32 ns.

• Circuit B comprises 636 logic gates and has delay of 8 ns.

For this problem assume gate count is equvalent to cost. You suspect that they are not optimal
among all possible designs. How would you attempt to prove that?

Solution:

For each of them, find a design that uses a fewer number of gates with the same delay, or
a design that has a smaller delay with the same number of gates.
(Trying to find a one that uses less than 384 gates and also has less than 8 ns is not
appropriate, since it is unlikely to be possible.)

3 Costs [4 pts]

Suppose we find a source for square wafers to use in our factory (impossible, but makes the
arithmetic easier). These wafers are 20 cm on a side. Manufacturing costs per wafer are $6K.
Our die layout is 2 cm × 3 cm. The manufacturing die yield is 50% for 6 cm2. Calculate the
per die cost.

Solution:

We can place 10× 6 = 60 dies on a wafer, while 20× 2 cm2 is wasted. Among those 60 dies,
30 dies (50%) are defect-free. By dividing $6K by 30, $200 is the cost per die. Update
(3/16): you may rotate dies to put more than 60 dies on a wafer.

Student ID number:

4 FPGAs [5 pts]

You are given a set of 6-input LUTs and asked to use them (with no other components or
logic gates) to implement a 8-input LUT. Show how this can be done using the least number
of 6-input LUTs as possible. How many 6-input LUTs does it require?

Solution:

First of all, an 8-input LUT has 28 = 256 configuration bits. Since each 6-input LUT
has 26 = 64 configuration bits, we need four 6-input LUTs to store all of them. Each of
those four 6-input LUTs takes the first six inputs and selects one bit to output. Then, we
can implement a 4-to-1 multiplexer using a 6-input LUT, which selects one of those four
outputs depending on the remaining two inputs. This design uses five 6-input LUTs.

in[5:0]

in[7:6]

6-LUT6-LUT

6-LUT

6-LUT

6-LUT

out

5 Boolean Algebra [5 pts]

Given the Boolean function f = a′c + abc, algebraically derive f ′ in a reduced (minimal) sum-
of-products form. Show your work.

Solution:

f ′ = (a′c + abc)′

= (a′c)′(abc)′

= (a + c′)(a′ + b′ + c′)
= aa′ + ab′ + ac′ + c′a′ + c′b′ + c′c′

= 0 + ab′ + ac′ + c′a′ + c′b′ + c′

= ab′ + c′(a + a′ + b′ + 1)
= ab′ + c′

Student ID number:

6 Don’t-Cares [5 pts]

Given the reduced Boolean function f = a′b′d + bcd + b′cd′ + ab′d′ representing the output of
circuit. Now assume that the following input combinations are invalid—i.e., they will never
appear in actual use of the circuit: {a, b, c, d} = 0000 and {a, b, c, d} = 1101. Can you further
reduce the function for the remaining valid input patterns? Show your work.

Solution:

Karnaugh map:

cd

ab

00 01 11 10

00

01

11

10

1 11

1

1 1

1

-

-

0 0 0

0 0

0 0

Boolean expression:
f = a′b′ + b′d′ + bcd

Student ID number:

7 NAND Networks [4 pts]

Implement the circuit shown below using only 2-input NAND gates (no inverters or other
gates).

c

a

b

Solution:

c

a

b

Student ID number:

8 State Transition Diagrams [5 pts]

In the space below, neatly draw the state transition diagram for a Moore finite state machine
with the following specification. The FSM has a single input, IN , and a single output, OUT .
After reset it outputs a 0. When it sees a consecutive sequence of three 1’s or three 0’s
at its input, it outputs a 1, then starts looking again. (For example, for the input sequence
0111 1111 0001, it outputs a sequence 0000 1001 0001, assuming that it resets at the beginning
and outputs a 0 in the first cycle.)

Solution:

Init

One1

One2

Acc
[OUT=1]

Zero1

Zero2

1

1

1
1

1

1

0

0

0
0

0

0

Labels on the edges represent the value of IN , and OUT is 0 unless specified.

Student ID number:

9 Verilog

Consider the following state transition diagram. It takes an input X, and has a Mealy style
output (Y) and a Moore style output (Z). Labels on the edges represent X/Y . Neatly write
out the behavioral Verilog specification for this machine with binary encoded states and one-hot
encoded states on the following pages. Do not change the provided templates.

0/0

1/0 0/0

1/1

0/0
1/0

S0

S1

S2
[Z=1]

[Z=0]

[Z=0]

Student ID number:

9.1 Verilog with Binary Encoded States [6 pts]

module fsm_binary(input X, output reg Y, output reg Z, input rst, input clk);

localparam S0 = 2'b00;

localparam S1 = 2'b01;

localparam S2 = 2'b10;

wire [1:0] ps;

reg [1:0] ns;

REGISTER_R #(.N(2), .INIT(S0))

state_reg (.q(ps), .d(ns), .rst(rst), .clk(clk));

// write your answer below

Solution:

always @(*) begin

ns = ps;

Y = 0;

Z = 0;

case(ps)

S0: if(X) ns = S1;

S1: if(X) begin

ns = S2;

Y = 1;

end

else ns = S0;

S2: begin

ns = S0;

Z = 1;

end

endcase

end

endmodule

Student ID number:

9.2 Verilog with One-Hot Encoded States [6 pts]

module fsm_onehot(input X, output Y, output Z, input rst, input clk);

localparam S0 = 3'b001;

localparam S1 = 3'b010;

localparam S2 = 3'b100;

wire [2:0] ps;

wire [2:0] ns;

REGISTER_R #(.N(3), .INIT(S0))

state_reg (.q(ps), .d(ns), .rst(rst), .clk(clk));

// write your answer below

Solution:

assign Y = ns[2];

assign Z = ps[2];

assign next_state[0] = (ps[0] & ~X) |

(ps[1] & ~X) |

ps[2];

assign ns[1] = ps[0] & X;

assign ns[2] = ps[1] & X;

endmodule

Student ID number:

10 Implementation of Finite State Machine [6 pts]

Based on your answer in the previous question, draw a gate-level circuit diagram for a one-hot
encoded implementation for this machine, using simple logic gates and flip-flops.

Solution:

X

Y

Z

Student ID number:

11 Counters [8 pts]

Consider a special 4-bit counter with 4 outputs, a-d, that has the following output sequence
(note that 0000 never appears). This counter is an instance of a “Galois counter”, known for
generating pseudo-random sequences with a very small number of logic gates.

{a, b, c, d} ∶ 0001→ 0010→ 0100→ 1000→ 0011→ 0110→ 1100→ 1011→ 0101

→ 1010→ 0111→ 1110→ 1111→ 1101→ 1001→ 0001

Draw a circuit diagram for this counter with 4 FFs (minimize the number of gates).

Hint: you may use any method you like to solve this, however, we suggest you begin by writing
out the truth-table representing the next state function, then carefully examine it. That might
lead to some shortcuts.

Solution:

This is an LFSR where cnext is an XOR of a and d.

a b c d

Student ID number:

12 CMOS Design [4 pts]

For the function defined in the following truth-table, design a static CMOS gate (always pulls
its output to Vdd or GND). Better solutions have fewer transistors.

a b c f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Solution:

f ′ = ab′c + abc′ + abc = a(b′c + bc′ + bc) = a(b′c + b) = a(b + c)

a

a

b

b c

c
f

Student ID number:

13 XOR Gate Implementation [5 pts]

Draw a transistor-level circuit diagram for an y = xor(a, b). You cannot assume you have com-
plemented inputs. Better solutions have fewer transistors. Hint: Think in terms of transmission
gate circuits. Your solution need not be a static gate.

Solution:

Good (full credit):

b

b

a

y

a

b

Minimum:

a a

b
by

b

Student ID number:

14 Register Transfers [4 pts]

Given the block diagram shown below, where the registers are initialized with the values A, B,
C, and D as shown, what is the minimum number of cycles needed to achieve a state where
the register values (from top to bottom) are A, A +B, A +B +C, and A +B +C +D. Explain
what happens on each clock cycle. Note that a crossbar switch is a combinational logic circuit
that can be configured with the select signal to perform any permutation of its inputs. You can
change the values of the select signals and enables arbitrarily each cycle (but you don’t need
to tell us their values).

Crossbar
Switch

A

B

C

D

S

x0

x1

x2

x3

y0

y1

y2

y3

sel

A_sel

B_sel

C_sel

D_sel

A_en

B_en

C_en

D_en

Solution:

2 cycles.
First cycle: Store A+B in the second register overwriting B, and C +D in the last register
overwriting D.
Second cycle: Store (A+B)+C in the third register overwriting C, and (A+B)+ (C +D)
in the last register overwriting C +D.

Student ID number:

15 Switch Networks [5 pts]

For the 4 × 4 crossbar switch used in the previous question, describe a scheme to implement it
using transmissions gates. It takes a 4-bit one-hot select signal for each output (16 bits in total).
The data paths from input to output can only use transmission gates, but, if needed, you can
use simple logic gates for the control paths. Try to use the least number of transmission gates
as possible. You don’t need to draw the entire circuit, particularly for parts that are repeated.

Solution:

x0 x1 x2 x3

y0

y1

y2

y3

sel0_0 sel0_1 sel0_2 sel0_3

sel1_0 sel1_1 sel1_2 sel1_3

sel2_0 sel2_1 sel2_2 sel2_3

sel3_0 sel3_1 sel3_2 sel3_3

Student ID number:

16 Circuit Delay [5 pts]

Consider the circuit shown below with a transmission gate in series with a couple inverters. The
right most inverter is sized 2X and drives a capacitive load represented by CL. We represent
the drive resistance of a unit sized inverter as RN and its input capacitance as 3CN (we assume
the inverter is sized to have balanced pullup and pulldown strength). The transistors in the
transmission gate have the same sizes as the ones in the unit sized inverter. Furthermore,
assume that γ = 1. Ignore wire resistance and capacitance.

Write an expression for the total delay from input to output of this circuit, in terms of RN ,
CN , and CL.

in out

x

x’
CL

1x 2x

Solution:

The parasitic capacitance of 1x inverter is 3CN as γ = 1. There is 3CN capacitance on
each side of the transimission gate. The transmission gate has resistance RN (RN/2 is also
okay). The input capacitance of 2x inverter is 6CN . So, the delay of the first inverter is

ln 2 ⋅ (RN(3CN + 3CN + 3CN + 6CN) +RN(3CN + 6CN)) = 24 ln 2 ⋅RNCN (1)

The paracitic capacitance of 2x inverter is 6CN . The delay of the second inverter is

ln 2 ⋅
RN

2
(6CN +CL) = 3 ln 2 ⋅RNCN + ln 2 ⋅

RNCL

2
(2)

Therefore, the total delay is

27 ln 2 ⋅RNCN + ln 2 ⋅
RNCL

2
(3)

Student ID number:

17 Propagation Delay [4 pts]

Consider the circuit shown below comprising unit sized inverters and NAND gates. Each 2-input
NAND gate has the same input capacitance as the inverter. We know that the propagation
delay for an inverter can be expressed as tp = tp0(1 + f/γ), and for a 2-input NAND gate as
tp0(2+4f/3γ), where tp0 is the intrinsic delay of an inverter. Derive an expression for the delay
from input x to output y in terms of tp0 and f , where f is the fanout of the last NAND gate.
Do not resize the gates. For this problem assume that γ = 1.

x y

z

p q

Solution:

The inverter has fanout 2, the first NAND gate has fanout 1, and the last NAND gate has
fanout f .

tp0(1 + 2) + tp0(2 +
4

3
) + tp0(2 +

4

3
f) = tp0(

25

3
+
4

3
f)

18 Layouts [2 pts]

CMOS standard cell libraries are often designed with the layout of the transistors being wider
than the minimum allowed by the process design rules. Explain why this is done (non-minimal
sized transistors used).

Solution:

The wire delay may be reduced by doing so.

Student ID number:

19 Resetting Flip-Flop [5 pts]

Draw the circuit diagram for a positive-edge-trigger d-flip-flop with a synchronous reset input
(it resets to 0). Better solutions have fewer extra transistors.

Solution:

clk’

clk

clk

rst’

rst

rst

D

clk’

clk

clk

Q

Student ID number:

20 Multi-Stage Circuits

Consider the circuit shown below with a 4-bit ripple adder with registered inputs and output.
Also shown a detailed circuit of the ripple adder. For FAs, the delay is 20 ps from any input to
any output. For FFs, the clock to q delay is 10 ps, the setup time is 10 ps, and the hold time
is 10 ps.

A B

+
a b

r

C

4 4

4 4

5

5

5

FA FA FA FA

a3 b3 a2 b2 a1 b1 a0 b0

r0r1r2r3r4

0

20.1 Clock Frequency [2 pts]

What is the maximum clock frequency for this circuit?

Solution:

Four FAs in a series, causing 80 ps delay. Thus, fmax =
1

(10+10+80) ps = 10 GHz

Student ID number:

20.2 Retiming [5 pts]

Retime and redraw the circuit to improve the maximum clock frequency. What is the improved
frequency? Hint: You can separate an N -bit FF into N 1-bit FFs. An example of valid retiming
over the FA is shown below.

FA FA

Solution:

Two FAs in a series, causing 40 ps delay. Thus, fmax =
1

(10+10+40) ps ≈ 16.6 GHz

FA FA FA FA

C0C1C2C3C4

A0A1A2A3 B0B1B2B3

0

Student ID number:

Build timestamp: Friday 17th March, 2023 11:50

