
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS151/251A J. Wawrzynek
Spring 2024 3/12/24

Exam 1

Name:

Student ID number:

Class (EECS151 or EECS251A):

Before solving the problems, write your student ID number on all pages.

You have 170 minutes to take the exam.

For each problem if you find yourself taking excessive time to work out a solution consider skipping
the problem or a fresh approach. Also, start by answering the easier questions and then move on to
the more difficult ones.

No calculators, phones, or other devices allowed.

Neatness counts. Make your answers neat and clear—particularly circuit diagrams. Also, remember
to use ”solder dots” on three-way connections. We will deduct points if we need to work hard to
understand your answer.

Work out your answers on scrap paper then neatly copy them into the space provided for them.

1

Student ID number:

1 Pareto Optimality [5 pts]

John is exploring the space of circuits implementations for his design and discovers that Pareto
optimal designs all lie on a curve described by AT 2

= k, where A is the area, T is the minimal clock
period, and k is a constant. He has a particular Pareto optimal design with an area of 100µm2 and
runs at 1 GHz. He finds a way to increase the speed to 2 GHz, but the area increases to 500µm2. Is
this new design also Pareto optimal? Show your work.

Student ID number:

2 Chips Costs [5pts]

You are charged with designing an ASIC for your company. You spend $2M on NRE costs and then
the foundry charges you $10 per die. You buy 100,000 chips worth of wafers and package each chip
for $1 each and then test the packaged parts for $1 each. The results of the testing indicates that the
final yield is only 40%. What is the resulting cost to your company of each of your working chips?

Given your knowledge of ASIC design, fabrication, and testing, list two ways you could have saved
money.

Student ID number:

3 FPGA LUT Circuit [12pts]

1. In the box below and using the indicated port signals, complete the drawing of the internal
circuitry of a 2-LUT, using FFs, 2-to-1 multiplexors, and simple logic gates as needed. Sin is a
bit-serial data input port and Sclk is a clock signal to be used for configuring the LUT function.
x1, are x0 are the LUT data inputs and y is the LUT output.

2. How many distinct logic functions can this LUT implement?

Student ID number:

4 Boolean Algebra [10pts]

Consider the following Boolean expression: f = āb̄d + bc̄ + c̄d̄

1. Using the K-Map below, derive the minimized product-of-sums form

2. Using the K-map, find f̄ in sum-of-products form

3. Find f̄ algebraically leaving your result in product-of-sums form. Show your work.

POS SOP

Student ID number:

5 Combinational Logic Design [10pts]

Recall that Binary Coded Decimal (BCD) is a number representation that uses the binary encodings
0000–1001 to represent the 10 decimal digits. Derive two combinational logic functions that each
accept a BCD digit and outputs a 1 iff that digit is evenly divisible by 3. (Yes, 0 is divisible by 3.)
One expression should be in SOP form and the other is POS, and both should be minimized.

Student ID number:

6 Finite State Machine [25pts]

Below is the STD for an FSM with a single input, in, and a single output, out. The reset (initial) state
is S0.

S1

S2

S3

S0

0/0

0/0

0/0

0/0

1/0

1/01/0

1/1

Based on the STD:

1. In words, briefly describe the function of the FSM:

Student ID number:

2. Write the behavioral Verilog description using a case statement. We have provided the initial
module definition. Note that our code includes the EECS151 library, and interfaces for the
register generators are shown at the end of the exam.

`include "EECS151.v";

module FSM(in, out, clk, rst);
input in, clk, rst;
output out;

reg [1:0] next_state
wire [1:0] state;
reg output;

REGISTER state_register #(2) (.q(state), .d(next_state),
.clk(clk), .rst(rst));

localparam S0 = 2'b00,
localparam S1 = 2'b01,
localparam S2 = 2'b10,
localparam S3 = 2'b11;

always @(*) begin
next_state = S0;
output = 1 b0 ;
case (current_state)

S0: begin
if(in) next_state = S1
else next_state = S0

end
S1: begin

if(in) next_state = S0
else next_state = S2

end
S2: begin

output = in;
if(in) next_state = S3
else next_state = S0
end

S3: begin
if(in) next_state = S0
else next_state = S2

end
endcase

end
assign out = output;
endmodule

Student ID number:

3. Draw the circuit diagram for its implementation using 1-hot encoding. Use only FFs, ANDs,
ORs (of any number of inputs), and bubbles for inversion. You don’t need to connect the clk,
and reset signal to the FFs, but do need to indicate the reset values. Draw your circuit in this
box:

4. Derive the next state and output logic for an binary encoded version with the following state
assignments: S0=00, S1=01, S2=11 S3=10. Leave your answer in unoptimized SOP form.

Student ID number:

7 Transistor Layout [5pts]

The figure below shows the layout of a transistor used as a pulldown in an inverter. Count and report
the total number of unit squares for each of the following:

1. The transistor gate region:

2. The source diffusion-region:

3. The drain diffusion-region:

Student ID number:

8 Static CMOS gate [5pts]

Draw the transistor level circuit diagram for a static CMOS gate that implements y = c + āb using
the least number of transistors possible. You may assume you have inputs available in both comple-
mented and uncomplemented form.

Student ID number:

9 Tri-state Buffers [10pts]

1. For some application you need a tri-state buffer, but you would like to combine it with a NAND
function. Draw a transistor level circuit that would achieve both functions with the minimal
number of transistors. Label the inputs and outputs.

Student ID number:

2. Supposed you are asked to design a 4-to-1 multiplexor using inverting tri-state buffers, invert-
ers, and no other logic elements. Your multiplexor must have a non-inverting output. Neatly
draw the circuit diagram. Label the data inputs, a, b, c, and d, the output as y, and the select
controls as s0 and s1.

Student ID number:

10 Logic Gates [5pts]

For the circuit shown below, complete the waveforms for the signal nodes, X and Y.

A

B

X

Y

Student ID number:

11 Circuit Design [12pts]

In lecture we presented a parallel-to-serial converter. It could be used, for instance, for sending words
over a wire or a wireless link, one bit at a time. Your task here is to design a circuit for receiving the
bits, a serial-to-parallel converter. You are tasked to design a circuit that adheres to the following
specifications, using FFs, multiplexors, and simple logic gates as needed.

1. Your circuit will receive the bits of each word (4-bit words in this case), LSB first, one per clock
cycle as shown below and must collect up the bits and present them to the external interface in
word form.

2. The external interface supplies a “data request signal (DRS)” every four clock cycles that your
circuit should use to provide the received bits to the interface. The output needs to remain
stable until the next occurence of the DRS signal.

The input waveform will look like the following:

clk

IN d0 d1 d2 d3 d0 d1 d2 d3 d0 d1

DRS

Neatly draw your circuit in the box provided on the next page:

Student ID number:

Student ID number:

Now suppose, the external interface wants to be able to get the received word either MSB-first or
LSB-first (big vs. little endian). The external circuit will additionally send an ”MSB-first” signal
every four clock cycles. If the MSB-first signal is high, then the first bit received in the stream (d0)
should be considered the MSB, and the last bit (d3) the LSB. If the MSB-first signal is low, then the
last bit received is the MSB and the first bit is the LSB.

Draw the updated circuit below. You may choose to abstract your answer from above and add addi-
tional circuitry, or to redraw it with modifications as needed.

Student ID number:

Student ID number:

Wednesday 27th March, 2024 03:42

Student ID number:

blank

Student ID number:

blank

Student ID number:

blank

