
EECS 151/251A Homework 3

Due Monday, Feb 12th, 2024

Introduction

You will be asked to write several Verilog modules as part of this HW assignment. You will need to
test your modules by running them through a simulator. We recommend the following free, online
Verilog simulator: https://www.edaplayground.com.

Important : Use the register library in EECS151.v when sequential logic is needed for all of the HW
problems.

Problem 1: Parallel to Serial Converter

In lecture, we introduced the parallel to serial converter. This module is defined with the following
Verilog code:

Important : Use the register library in EECS151.v.

module ParToSer(ld, X, out , clk);

input [3:0] X;

input ld, clk;

output out;

wire [3:0] Q;

wire [3:0] NS;

assign NS =

(ld) ? X : {Q[0], Q[3:1]};

REGISTER state #(4)

(.q(Q), .d(NS), .clk(clk));

assign out = Q[0];

endmodule

1. Given the following waveforms for X,ld, and clk, please draw the corresponding waveform
for Q, NS, and out.

clk

X 0x3 0xD

ld

Q 0x0

NS 0x0

out

Figure 1: Serial to Parallel Waveform

1

https://www.edaplayground.com

2. Convert the above module to a generator that has takes as parameter N which represents the
width of the X input.

Solution:

1. Note that the values only change on the positive edge of the clock signal, this is not clear
from the image.

clk

X 0x3 0xD

ld

Q 0x0 0x3 0x9 0xC0xD0xE 0x7 0xB0xD0xE 0x7 0xB0xD0xE

NS 0x0 0x3 0x9 0xC0xD0xE 0x7 0xB0xD0xE 0x7 0xB0xD0xE 0x7

out

2. module ParToSer_gen(ld , X, out , clk);

parameter N = 4;

input [N-1:0] X;

input ld, clk;

output out;

wire [N-1:0] Q;

wire [N-1:0] NS;

assign NS =

(ld) ? X : {Q[0], Q[N-1:1]};

REGISTER state #(N)

(.q(Q), .d(NS), .clk(clk));

assign out = Q[0];

endmodule

Problem 2: Up/Down Counter with Powers of 2

We have already seen many examples of counters in lecture. Here we introduce the Up/Down
counter, which takes an additional bit sign, that determines whether the module counts up (sign
= 0) or down (sign = 1). In addition we introduce a second output pow2 that outputs 2 raised to
the power of the value in the counter. The full specification is defined as follows:

Specification:

• Input: clk (the clock signal), rst (reset), en (enable), and sign (up vs. down sign).

• Outputs: 4-bit count named cnt, and 16-bit value for the power of two named pow2.

• Counters hold the value of cnt constant when both rst and en are 0.

• Counters set cnt to 0 on a positive edge of clk if rst is 1.

• Counters change cnt by 1 at a positive edge of clk if rst is 0 and en is 1. If sign is 0, the
counter will increase the value, if sign is 1, the counter will decrement the value.

2

• When cnt is the maximum possible value (24 − 1 for 4-bit counters), cnt will become 0 next
time it is incremented. Similarly, when cnt is 0, it will become 24−1 when next decremented.

1. Based on the specification above, write a Verilog module that behaves as required, but with
only the use of one register.

2. Write a second Verilog module that uses 2 registers, one for the counter and a shift register
for the power of 2.

3. Write a Verilog testbench that properly drives both modules. Ensure that the clock has a
period of 10ns. Make sure to test:

(a) Every combination of rst (reset), en (enable), and sign.

(b) The counter going up and down for at least 5 clock periods with no changes to the input
signals.

(c) At 0, the counter should decrement to 24 −1, and at 24 −1 the counter should increment
to 0.

(d) On a reset, the counter should go to 0.

(e) On en = 0, the counter value should not change.

(f) Use the $monitor command to output the value of the input and output signals in a
single repeating print statement ($monitor prints out a statement every time a given
signal value changes, so you may find it useful for debugging your counter as well).

Be sure to include all of the Verilog code you wrote, as well as the output of the $monitor
command.

Important Note: There are several resources online to help write good test benches, but you can
start with the Verilog Primer pdf on the class website. (Note that there is a Primer pdf and Primer
slides. Both are helpful but the slides do not go as far into testbenches as you may need.)

Solution:

1. module pow2_count(clk , rst , en , cnt , pow2 , sign);

input clk , rst , en , sign;

output[3:0] cnt;

output[15:0] pow2;

wire[3:0] next_cnt;

reg[15:0] pow2;

REGISTER_R_CE #(.N(4), .INIT (0))

state(.d(next_cnt), .q(cnt), .clk(clk), .rst(rst), .ce(en));

// Simple assign to increase count

assign next_cnt = sign ? cnt - 1 : cnt + 1;

// Now to calculate the power of 2 using if statements

// Can use case statement

always @(*)

if (cnt == 0) pow2 = 16’x0001;

else if (cnt == 1) pow2 = 16’x0002;

3

else if (cnt == 2) pow2 = 16’x0004;

else if (cnt == 3) pow2 = 16’x0008;

else if (cnt == 4) pow2 = 16’x0010;

else if (cnt == 5) pow2 = 16’x0020;

else if (cnt == 6) pow2 = 16’x0040;

else if (cnt == 7) pow2 = 16’x0080;

else if (cnt == 8) pow2 = 16’x0100;

else if (cnt == 9) pow2 = 16’x0200;

else if (cnt == 10) pow2 = 16’x0400;

else if (cnt == 11) pow2 = 16’x0800;

else if (cnt == 12) pow2 = 16’x1000;

else if (cnt == 13) pow2 = 16’x2000;

else if (cnt == 14) pow2 = 16’x4000;

else if (cnt == 15) pow2 = 16’x8000;

else pow2 = 0;

// You can also replace the entire block with the

// following line , not as clear how it ’s implemented

assign pow2 = 1 << cnt;

// This compiles to a barrel shifter! Implemented

// as a decoder with a bunch of tri -state buffers

endmodule

2. The extra register can just be used as a shift register:

module pow2_count(clk , rst , en , cnt , pow2 , sign);

input clk , rst , en , sign;

output[3:0] cnt;

output[15:0] pow2;

reg[15:0] pow2;

// wire [15:0] next_pow;

reg[15:0] next_pow;

wire[3:0] next_cnt;

REGISTER_R_CE #(.N(4), .INIT (0))

state(.d(next_cnt), .q(cnt), .clk(clk), .rst(rst), .ce(en));

REGISTER_R_CE #(.N(16), .INIT (1))

pow_state (.d(next_pow), .q(pow2), .clk(clk), .rst(rst), .ce(en));

// Simple assign to increase count

assign next_cnt = sign ? cnt - 1 : cnt + 1;

// If max val , reset is 1, else reset is max_val

always @(*)

if (sign)

next_pow = pow2[0] == 1 ? 1 << 15: pow2 >> 1;

else

next_pow = pow2[15] == 1 ? 1: pow2 << 1;

endmodule

4

3. There are many ways to create a valid testbench, here is one way:

// Code your testbench here

// or browse Examples

module top_tb;

reg clk , rst , en , sign;

wire[3:0] out;

wire[15:0] pow2;

integer i;

pow2_count count_reg (.clk(clk),

.rst(rst), .en(en), .cnt(out),

.sign(sign), .pow2(pow2));

always #5 clk = ~clk;

initial begin

clk <= 0;

rst <= 0;

en <= 0;

sign <= 0;

$monitor ("t=%3d,␣c=%1d,␣rst=%1d,

␣␣␣␣en=%1d,␣state =%4d␣pow2 =%6d",

$time , clk , rst , en ,

out , pow2);

#10

for (i = 0; i <=1; i = i + 1) begin

sign = i;

rst <= 0;

en <= 1;

#10

rst <= 1;

en <= 0;

#20

rst <= 0;

en <= 1;

#2000

rst <= 1;

#15

rst <= 0;

#20;

end

$finish ();
end

5

endmodule

Problem 3: Shift Register

A very common hardware structure is a shift register. They appear in many forms in hardware
designs, and are an important precursor to pipelined processors.

1. Write a shift register generator with the following specifications:

(a) 2 Parameters: N the bit length of each element (width), and LEN length of the shift
register (depth)

(b) Input: clk, rst, en, ele in (a N-bit input to the shift register)

(c) Output: ele out (the N-bit value which was at the head of the shift register prior to en

begin asserted)

(d) Shift register elements are set to ’b0 if rst asserted

(e) ele in is shifted into shift register if en is asserted and rst is deasserted.

2. Write a Verilog module combining your shift register module with your counter module from
Problem 2. Instantiate two shift registers: (1) with N=4 and LEN=5 and (2) N=1 and LEN=6.
Connect the cnt output directly to the ele in input of the first shift register. Write simple
combinational logic which outputs ’1’ if an input is divisible by 4. Connect the pow2 output
to the input of this logic, and the output of the combinational logic to the ele in input of
the second shift register.

3. Extra Challenge: Write the above shift register with only a single register!

Solution:

1. module ShiftRegister(clk , rst , en , ele_in , ele_out);

parameter N = 3;

parameter LEN = 4;

input [N - 1:0] ele_in;

output [N - 1:0] ele_out;

input clk , rst , en;

//wire [N*LEN -1: 0] all_vals;

wire[N-1:0] array2D [LEN:0];

assign array2D[0] = ele_in;

assign ele_out = array2D[LEN];

genvar i;

generate

for (i = 0; i < LEN; i = i + 1) begin

REGISTER_R_CE #(N) sr_state (.q(array2D[i + 1]),

.d(array2D[i]), .clk(clk), .rst(rst), .ce(en));

6

end

endgenerate

endmodule

2. Combination:

module top_tb;

reg clk , rst , en , sign;

reg [3:0] ele_in;

reg [3:0] out;

reg [15:0] pow2;

reg pow2_div4;

reg pow2_div4_out;

integer i;

ShiftRegister #(.N(4), .LEN (5)) sr (.clk(clk), .rst(rst),

.en(en), .ele_in(ele_in), .ele_out(out));

ShiftRegister #(.N(1), .LEN (6)) sr_2 (.clk(clk), .rst(rst),

.en(en), .ele_in(pow2_div4), .ele_out(pow2_div4_out));

pow2_count count_reg (.clk(clk), .rst(rst),

.en(en), .cnt(ele_in), .sign(sign), .pow2(pow2));

// Logic to detect if if pow

assign pow2_div4 = ~|pow2[1:0];

endmodule

Problem 4: Combining LUTs

1. Suppose you are only given 4-LUTs (any number of them) and no other modules (this includes
simple logic gates such as inverters, ANDs, ORs, etc.). Please draw a diagram showing how
you would combine these LUTs to generate a 5-LUT. Remember than a 5-LUT should be
able to implement any boolean function on 5 inputs. Provide some justification (truth table,
formula, etc.) why your diagram is correct.

2. Extending this, explain how you would generate a (N+1) LUTs from any number of N-LUTs.

Solution:

1. You need 3 4-LUTs. You can use the 3rd 4-LUT as a multiplexer that uses the top bit
of the 5 input bits.

2. This holds for any N to N + 1 LUT combo. You always require 3 LUTs, where the last
LUT is configured to a multiplexer on 1-bit.

7

Problem 5: LUT Mapping

Given the following circuit (Figure 2) with 5 inputs and 2 outputs:

Figure 2: Problem 5 circuit

1. Please determine how many 3-LUTs are needed to fully represent this circuit (this means
that the state in every register is equivalent between your LUT-based circuit and the original
circuit).

2. For each LUT, please give the truth table that represents the function the LUT encodes.

Solution:

1. The strategy here is to find spots where you can find 3 or less inputs (can always pass in
a 1 or 0) that maps to a single bit. Note that not all LUTs will be attached to a register.
You can map the function with 6 3-LUTs, assuming that each LUT is connected to one
register. If you assume that each LUT is connected to a shift register of depth 2 (which
is available in some architectures) then you can map this with 5 3-LUTs (can squish
together LUT4 and LUT 0). The mapping is drawn below:

8

2. For the LUTs in the above diagram, the truth tables are:

(a)

a b LUT0 out

0 0 1
0 1 1
1 0 0
1 1 1

(b)

c d LUT1 out

0 0 1
0 1 1
1 0 1
1 1 0

(c)

e LUT1 out LUT0 out LUT2 out

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

(d)

a LUT0 out LUT1 out LUT3 out

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

9

(e)

LUT0 out LUT4 out

0 1
1 0

(f)

LUT0 out LUT2 out LUT3 out LUT5 out

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

10

