EECS 151/251A Homework 4

Due Monday, Feb 19", 2024

Introduction

This homework is meant to test your understanding of the basic principles used to construct finite
state machines. If asked to submit a Verilog module, please show the full module. If asked to
simulate a Verilog module, create a testbench to run your modules in a simulator. We recommend
the following free, online Verilog simulator: https://www.edaplayground. com.

Important: Use the register library in EECS151.v when sequential logic is needed for all of the HW
problems.

Problem 1: Gray Code

In lecture, we discussed Gray codes. As a reminder, Gray codes are an ordering of binary numbers
such that each successive value only has a single bit change relative to the previous number. For
example, 00 — 01, or 00 — 10 both represent possible Gray codes. Gray codes are often seen in
error correction since only one bit can change between two numbers.

1. Write a Gray code for a 4-bit binary number.

2. Create a schematic for an optimal circuit using 2-input logic gates such that when given any
3-bit value as input produces a 3-bit output representing the next number in the Gray code.
For example, if 000 is passed as input to the circuit, then the output of the circuit should be
001. (Hint: try making a combintional logic circuit per bit)

(a) There are multiple solutions, however this is the most common 4-bit Gray code.
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010



https://www.edaplayground.com

1011
1001
1000

(b) Let the input Gray code bits be A,B,C' where A is the MSb. The easiest way to solve this
problem is to consider each bit individually. This way Karnaugh maps can be used to find
the logically expression for each bit. Let the A’,B’,C’ represent the bits for the output
Gray code value.

A= BC + AC
AB

oo 01 11 10

o o (1 1] o

C
vl o )
B'=BC + AC
AB
00 01 11 10
o Lo @) o
C
VG 0o
C'=AB+ AB

The finally circuit looks like this:




:%
#

‘ o ] ]

Problem 2: Boolean Simplification

Boolean algebra can be used to simplify even the most complex Boolean expression. Simplify each
expression list below to prove equivalence to the given final expression. For a list of Boolean algebra
laws vist: https://www.asic-world.com/digital/booleanl.html.

1. AB+BCD+BCD+BA+AB= B+D
2. D(A0+DA)+B+BA=1
3. C(A+ AB)+C(AB+ AB) = CA+AB+CAB

1.

b) AB+ BCD + BCD + BA

(a) AB+BCD+BCD +BA+AB

(b)

c) B(A+A)+BCD+ BCD
)
)

(
(d) B+BCD+ BCD
(e) B+D

(a) D(A0+DA)+B+BA
(b) D+ A0+ DA+ B+ BA (DeMorgan’s Theorem)



https://www.asic-world.com/digital/boolean1.html

0)(D +j) + B + BA (DeMorgan’s Theorem)
0)(D+A)+B+BA

+0)(D +A) + B+ B+ A (DeMorgan’s Theorem)
(A+1)(D+A)+B+B+A

I(D+A)+B+B+A

D+A+B+B+A

D+A+A+1

—~
o

+
+

o

~
_ Z L < O < O

(I
(A
(A

—~
= D

=
+++++++

v v/v v/ R/l

—
—.

) C(A+AB) +C(AB + AB)
) C(A+B)+C(AB+ AB)
) CA+CB+C(AB + AB)
) CA+CB+CAB+CAB
) CA+B(CA+C)+CAB
) CA+B(Z+5)+CA§
) _ —
)
i)
j)

)

Al Q QA Al Q

Problem 3: SOP to POS

Below there are two optimal Boolean functions in their SOP forms. For each function shown, use
Boolean algebra to generate the POS. Work must be shown. (Hint: You can confirm your
answer using a K Map).

1. ABD + AC
2. A+ BD + BC




+ BC + DC

N

d.
6. j(? + 5) (ﬁ + 5) (Demorgan’s Law)

7. A(B+C)(D+C)

Product of Sum Steps

5. AB+A(B+C)D
6. AB+ ADB + ADC
7. AB+ADC

8. (A+B)(A+D+C) (Demorgan Law’s)

Problem 4: NANDs to Other Gates

How many two variable functions can be implemented with a single AND gate along with (any
number) of inverters? Which two variable functions cannot be implemented?

All two variable functions can be implemented with a single AND gate and inverters except
XOR and XNOR. All 16 functions: https://www.allaboutcircuits.com/technical-articles
16-boolean-logic-functions-of-2-input-system/.

b
o o

ISEEE
oSO v [T N



https://www.allaboutcircuits.com/technical-articles/16-boolean-logic-functions-of-2-input-system/
https://www.allaboutcircuits.com/technical-articles/16-boolean-logic-functions-of-2-input-system/

10.
11.
12.
13.
14.
15.

16.

1N
+
Sy

NS
+
Sy

SO N
°«
o W

NN
o
w © W

N
@
sy




Problem 5: Karnaugh Maps

Karnaugh maps are used to quickly generate simplified Boolean expression for a given Boolean
function. Below are truth tables for a unknown functions. For truth table each, draw the accom-
panying Karnaugh map, then write out a simplified Boolean expression in both POS and SOP
forms using the Karnaugh map. The solutions should use the least amount of logic gates possible.

1. Hint: the optimal SOP has 3 terms and the optimal POS has 3 terms.

A | B | C | Output
01010 1
0101 0
0110 0
0111 1
117010 1
1101 0
1]111]0 1
17111 0

2. Hint: the optimal SOP has 6 terms and the optimal POS has 3 terms.

A | B | C|D]| Output
0]0]0]O0 1
0[0]0]1 -
0j]0[1]0 1
0[0]1]1 0
0]1]0]0 0
0O[1]0]1 1
O|1|1]0 1
O|1|1]1 0
1101010 -
110|001 1
110|110 1
110111 1
1(1]07]0 1
1(1]0]1 0
1(1]1]0 -
1 (111 1




AB
0o 01 11 10

o D[ o [
1o (1) o] o0

(a) Canonical form: ABC+ABC+ABC + ABC
(b) SOP:AC + BC + ABC
(c) POS: (A+B+C)(C+A)(C+B)
AB
060 01 11 10

m,;lj 0 o0 |[-
or | o (1) o ||1]

11 1 0 1 0

CD

(a) Canonical form: ABCD + ABCD + ABCD + ABCD + ABCD + ABCD+ABCD +
ABCD + ABCD + ABCD

(b) SOP: AB+ BD + ACD + ACD + ACD + ABCD
(c) POS: (A+B+C+D)(A+D+C)(B+A+C+D)




Problem 6: It’s a NAND’s World

CMOS is the most modern process for digital logic. In CMOS, it is simple to create NAND gates
which is advantageous because all logic can be reduced to NAND gates.

ot W

How would you wire a NAND gate to construct an inverter for any given input?
How would you wire a NAND gate to construct an OR gate for any given input?
How would you wire a NAND gate to construct an AND gate for any given input?
If the above is true, then why can all logic be represent with NAND gates?

Below is a schematic using a various types of 2-input gates that you want to create, but you
only have NAND gates! Translate the circuit into a new schematic using only 2-input NAND
gates. Your new circuit should use the minimum number of NAND gates.

| B:D}D
s

e -

>

Solution:

:‘:}Y oR Xt}\r
L

4. Let’s think about it. We know that all circuits can be represented as boolean expressions.
Every boolean expression has a truth table and every truth table can be used to create
a K Map. Any K Map can be used to create either a SOP or POS reduced boolean




expression. Both SOP and POS only involves AND and OR logical operations. Therefore,

any logically expression can be created using NANDs because AND and OR gates can
be constructed from NANDs.

| Y

Ba
D

10




Problem 7: Driving a Car (FSM)

Let’s create a FSM to represent driving a car. To reduce the complexity of such a dynamic problem,
we greatly simplify the our conceptual model of driving. The FSM will represent the state of the
car. Only two things can change the state of the car: (1) the driver making a decision (to continue
driving, or to stop and park the car), or (2) and emergency (flat tire, accident, or a mechanical
failure). The only thing we care about as engineers is whether the brake and hazard lights work
or not. The brake lights turn on when braking and the driver turns on the hazards light when an
emergency has occurred. Below we explain our simplified conceptual model of driving:

a. The car can be: on, off, accelerating, braking, parking, or in an emergency situation (stopped
and non-functional)

b. The driver enters the car when it’s off, and must decide whether to start driving (they can just
sit in the car and think about K-Maps)

c. If the driver is in the car and the car is off, then the driver cannot perform any action except
turn the car on

d. In order to start accelerating, the driver must first press the brake pedal to switch gears
e. In order to park the car, the driver must first press the brake pedal to switch gears
f. At any point when accelerating, the driver can slow down by braking

g. In a case of an emergency, regardless if the driver wants to keep driving, they must apply the
brakes to stop the car, turn the car off, and then turn on the hazard lights

h. Emergencies can only occur when accelerating in which a light on the dashboard indicates that
the driver must stop and turn the car off

Answer the following questions:

1. Draw a Moore state machine diagram. In this diagram you must:

(a) Have a bit vector to representing the state of the car. (This should be gray coded)
(b) Have 2 inputs:
i. driver indicating the driver decision to take an action to drive the car, or stop it
ii. emergency indicating an emergency has happened and the dashboard light is on

(c) Have 1 output: light which is asserted if either the brake or hazard lights are on

2. Telsa took interest in the simple driving model. They believe that this simplified model can
help their engineers understand the decision making process for drivers in the Bay. Engineers
collected data from two drivers to help train their auto navigation ML model.

(a) The state of the car was recorded for the first driver. Telsa engineers want to deduce
the driver’s decision making process.

(b) The second driver’s decisions were recorded live and the engineers want their ML model
to accurate guess the state of the car.

11



In order to verify the ML model’s output, the engineers need to know the correct answers!
Use your FSM to fill in the tables below for each driver. (Hint: Aren’t Telsa owners suppose
to be cautious software engineers. One is a very aggressive driver...).

Time Car Driver Emergency Light
CAR_OFF
CAR_ON
BRAKE
ACCEL
ACCEL
BRAKE
ACCEL
BRAKE
ACCEL
ACCEL
BRAKE
11 PARKING
12 CAR_OFF

Slolo| oo e|wlno|—lo

Table 1: Telsa driver 1

Time Car Driver Emergency Light

0 1 0 0
1 1 0 0
2 1 0 1
3 1 0 0
4 0 0 0
5 0 0 1
6 1 0 0
7 1 0 1
8 1 0 0
9 1 0 0
10 1 0 0
11 1 0 0
12 1 1 0
13 1 1 1
14 1 1 1
15 1 1 0
16 1 1 0
17 1 1 1

Table 2: Telsa driver 2

12



Solution:

driver =0

TN
(> e N\
\
N/ N\ o N )
\/ canore | (emergny =) fenencency) -
I I =
7 \\ // \\H/
/ (drive} == 1)
//
/ /. \\\\
/ (omon ) oo
/ /
/ -
/ (driver == 1)
| (driver ==1)
_ v P
/ (emergency == 1) Il (driver ==0) ,/ - \< ™
PARKING /[ enaxe AccEL (e ==1)
( ight=0 T ght=1 ) ight=0 | /
\\,, \\”//z\\\\ o \\,/Z
(emergency == 1) Il (driver == 0)

Time Car Driver Emergency Light
0 CAR _OFF 1 0 0
1 CAR_ON 1 0 0
2 BRAKE 1 0 1
3 ACCEL 1 0 0
4 ACCEL 0 0 0
5 BRAKE 1 0 1
Time Car Driver Emergency Light 6 ACCEL 1 0 0
0 CAR_OFF 1 0 0 7 ACCEL 1 0 1
1 CAR_.ON 1 0 0 ] ACCEL 1 0 0
R
1 ACCEL 0 0 0 10 ACCEL 1 0 0
5 BRAKE 1 0 1 11 ACCEL 1 1 0
6 ACCEL 0 0 0 12 BRAKE 1 1 0
7 BRAKE 1 0 1 13 PARKING 1 1 1
8 ACCEL 1 0 0 14 CAR_OFF 1 1 1
2 ggggj: o 0 0 15 EMERGENCY 1 1 0
1 PARKING ) o ) 16 EMERGENCY 1 1 0
19 CAR.OFF 0 0 17 EMERGENCY 1 1 1

Table 3: Telsa driver 1 Table 3: Telsa driver 2

13



