
EECS 151/251A Homework 11

Due Friday, May 3rd, 2024

Introduction

This homework is meant to test your understanding adders, multipliers and shifters. This is the
last homework! Rejoice :-)!

1



Problem 1: CLA Latency

Given the gate delays presented below, trace out and calculate the delay on the critical path for
the 8-bit CLA presented in slide 22 from the week 14 Adder lecture.

GATE Delay(ps)

OR 25

AND 19

XOR 37

Solution:

It is critical to understand how a carry-lookahead adder reduces latency of addition. A CLA
produces the carry-out from the addition for a bit-pair using an earlier carry-out (benefit only
comes from a bit-pair ealier than the immediate preceding bit-pair). This is implemented
hierarchical by combining multiple the generate and propagate terms from multiple bit-pairs.
By grouping bit pairs of long bit inputs, for example groups 4-bits, the carry-out of a 4-bit
group is available fast and allows the subsequent 4-bit group to start its addition.

From the above, The critical path does not deal with carry-out generation because that’s the
whole point of a carry lookahead adder! The critical path the longest path to the last sum bit.
This represents the case where the final carry-in must wait for all previous carry bits. The
diagram below shows the critical path.

The idea is that you need the carry bit from the second-to-last bit pair to generate the last

2



sum bit. Therefore, just trace the path to generate c7.

• The propagate and generate terms for all bit-pairs are generated in parallel. Furthermore,
all hierarchical propagate and generate terms are generated in parallel. Therefore, all
blocks in the same column have the same latency.

• c6 must be available to generate c7

• c4 must be available to generate c6

• To generate c4 The propagate and generate terms (including their hierarchies) from bit-
pairs 0 to 3 must be available

• To generate c6 The propagate and generate terms (including their hierarchies) from bit-
pairs 4 to 5 must be available

From the notes above four latencies need to be known: (1) the latency through 3 levels of
hierarchy, (2) the latency through 2 levels of hierarchy, (3) the latency of a single carry-out
generation, and (4) the latency for a single sum bit. These latencies represent the latency to
generate c4, the latency to generate c6, the latency to generate c7, and the latency to generate
s7. For single bit-pair, the propagate term takes the longest. For hierarchical generate and
propagate terms, the generate term dominates (DelayOR +DelayAND) if the carry-out is not
on the path, and is (2(DelayOR +DelayAND)) if the carry-out is on the critical path.

Latency =(DelayXOR + (DelayOR +DelayAND) + 2(DelayOR +DelayAND))+
2(DelayOR +DelayAND) + 2DelayXOR

= 331ps

3



Problem 2: CSA Latency

Suppose you want to design a fast 64-bit Wallace Tree multiplier using CSAs for the partial product
reduction.

1. How many CSAs are needed?

2. Suppose the delay for a CSA and a CPA, are 1ns and 4ns respectively. What is the minimal
delay for product reduction to final result (summing together the partial products)?

Solution:

The following answers based upon the diagram on the following page.

1. 62 CSAs. The number of CSAs could be solved mathematically by repeated dividing the
partial products by 3. The diagram is a visual confirmation.

2. There are 10 levels of CSA and one CPA. Therefore, the total latency is 10τCAS + τCPA.

4



5

Solution:



Problem 3: Log-Shifter

Design and draw a 4-bit arithmetic log-shifter capable of performing both logical left shifts and
right shifts. In addition to the shift-amount input (shamnt), there is an input named dir which is
set to 1 for right shift and 0 for left shift.

Solution:

6



Problem 4: Practice Base 2 Multiplication

Compute the products for the following base 10 numbers as 4-bit 2’s-complement binary numbers:
(a) -7 x 3, (b) 7 x -3, and (c) -7 x -3. Show your work for each step in the boxes below.

Solution:

7



Problem 5: Ripple Borrow Subtractor

In lecture, we discussed the design for a ripple carry adder. Your task is to design a ripple borrow
subtractor which has the same structure of the adder except it performs subtraction.

(a) Draw a single stage at the logic-gate level.

(b) Draw a diagram for a ripple borrow subtractor for 4-bit 2’s complement inputs at the stage
level.

Solution:

The subtractor circuit is fairly similar to the adder circuit. However, it is to build the subtractor
circuit from scratch rather than translating the adder circuit into a subtractor circuit (plus
you gain intuition).

The rules for binary subtraction are as such:

• 0 − 0 = 0

• 0 − 1 = 1

8



• 1 − 0 = 1

• 1 − 1 = 0

In subtraction, you have a borrow bit (which is similar to subtraction in base 10). A pair of
bits can only lend a borrow bit in the case of 1− 0. Furthermore, a borrow bit is required only
for the case 0 − 1 (this is important later).

From the above the truth table for a 2-bit subtractor, a half-subtractor, is:

A B DIFF BORROW

0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 0

Similar to how a full-adder is composed of two half-adder, a full-subtractor (3-bit subtractor)
is composed of two half-subtractors. The circuit for the half-subtractor is not shown since it
can be easily inferred from the table table.

At this point combining full subtractors is exactly the same as full adders. The important
aspect to take note is the bit being transferred is the borrow out which flows from higher order
bits to lower order bits.

9



Problem 6: Cross-bar Switch

Based on the cross-bar switch presented in lecture:

For the scenarios below, provide the hexadecimal value to represent the decoder input for a 4-bit
inputs. For example, given an implementation for a 16-bit input the first 4-bits of the hex value
would control the decoder of the output’s LSB, and the next consecutive 4-bits control the decoder
for the output’s second to last bit.

1. Bit-Reversal (ex. a0a1a2a3 → a3a2a1a0)

2. Pairwise Reversal (ex. a0a1a2a3 → a1a0a3a2)

3. Random Permutation: a0a1a2a3 → a1a3a2a0

Solution:

Note that the numbering of the bits is reverse relative to the slide. This was intentional. Final
exams often have similar problems with slight modifications. Do not solely rely on your cheat
sheet!

On the other hand, the final exams often make problems easier to solve if it is understood
correctly. For example, the backwards numbering of bits allows the decoder inputs to simply
be the numbering of the bit :-).

1. Bit-Reversal: 8’he4 (as decimal(LSb → MSb): 3∣2∣1∣0)

2. Pairwise Reversal: 8’h4e (as decimal(LSb → MSb): 1∣0∣3∣2)

3. Random Permutation: 8’h78 (as decimal(LSb → MSb): 1∣3∣2∣0)

10



Problem 7: 64-bit Adder

An application you are designing hardware for requires a 64-bit adder. You could: (1) design and
build a 64-bit adder, or (2) construct a 64-bit using very fast 32-bit adders you’ve already designed
and built. You decide to save time and construct a 64-bit adder using 32-bit adders.

Your 32-bit adder has the following specifications:

Inputs: 1-bit carryin, two 32-bit operands

Outputs: 1-bit carryout, a 33-bit sum

Latency: 64ps from carryin to carryout

Perform an analysis for two design points: (1) carry-select architecture, and (2) carry-lookahead
architecture. Design each architecture and compare the total delay and HW cost (number of each
adder, gates, multiplexors, etc) between the architectures.

Solution:

Carry-Select
A carry select architecture requires three 32-bit adders: one adder for the 32 LSbs, one for the
upper 32 MSbs with carryin = 0, one for the upper 32 MSbs with carryin = 1. Furthermore,
you would need a mux to selector which of the two upper 32-bit partial sum to use.

Latency : The latency would be 64ps + the delay of a mux. Since all the adders execute
in parallel, the final sum is known once the carryout from the 32 LSb adder is known.

Hardware Cost : The hardware cost is another adder and a mux. The cost of the mux
is negligible. The cost of a third adder is higher. Again, the third adder is necessary to
allow parallel computation of the upper 32-bits which is the reason why latency decreases.

Carry-Lookahead
The benefit of the carry lookahead adder is that the carryout bit is determined without rippling
through full adders. Additional logic, external to the adders, can be used to generate the
carryout of the 32 LSbs to start the addition of the upper 32 MSbs earlier.

Latency : The latency is 6τ + 64ps, where τ is the latency of the propagate and generate
term production. If a tree structure is implement to produce the carryout, then there
will be log2(32) = 5 levels of hierarchy. The delay of the generate signal dominates
because it requires two cascaded gates. Therefore, the total delay through the hierarchy
to produce the final propagate and generate is 5τ , where τ is the delay to produce a
generate term. The very last level of the hierarchy contains one unit which combines
all previous propagate and generate into P and G respectively then uses these terms to
produce a carry out (C + cinP )). Note the delay to produce the carryout is the same as
the generate delay. Therefore, the total latency is 6τ + 64ps.

11



Hardware Cost : The total hardware cost is two 32-bit adders and the logic carry looka-
head logic. Referencing Problem 1, half the units on each hierarchy level generate a carry
out. However, this carry out is used to calculate the sum bits only which we do not care
about because the 32-bit adder is doing this for us. The carry lookahead logic only needs

to produce the final carry out. Therefore, the addtional cost is
5

∑
i=0

2i 3-input logic gate

(2 AND gates and 1 OR gate).

12



Problem 8: Baugh-Wooley Annotation

We would like to prove that the Baugh-Wooley approach to signed multiplication is correct. Anno-
tate the corresponding circuit on slide 22 from the “Multipliers & Shifters” lecture for X = -3, Y
= -5, by writing down the inputs and outputs for each FA and HA blocks. Verify that the results
match what you expect as a result (Z = 15).

A labelled diagram of the multiplier is provided below. The naming convention is ELEMENT [ROW ][INDEX]
(ELEMENT can be HA, FA, NAND or AND, ROW is zero-indexed, and INDEX is zero-indexed
and is agnostic to the ELEMENT ). Fill in the tables below for the output of each element. Only
the values in the table will be graded. However, labelling may be instructive and easier to
visualize.

NAND 03 AND 02 AND 01 AND 00 FA 03 FA 02 FA 01 HA 00

NAND 13 AND 12 AND 11 AND 10 FA 13 FA 12 FA 11 HA 10

NAND 23 AND 22 AND 21 AND 20 HA 24 FA 23 FA 22 FA 21 HA 20

AND 33 NAND 32 NAND 31 NAND 30

Solution:

Note that that adders have two outputs: the sum and carry. The entries for the adders are in
the format carry ∣ sum.

NAND03 AND02 AND01 AND00 FA 03 FA 02 FA 01 HA 00
0 1 0 1 0∣1 0∣1 0∣1 0∣1

NAND13 AND12 AND11 AND10 FA 13 FA 12 FA 11 HA 10
0 1 0 1 0∣1 0∣1 0∣1 0∣1

NAND23 AND22 AND21 AND20 HA 24 FA 23 FA 22 FA 21 HA 20
1 0 0 0 1∣0 1∣0 1∣0 1∣0 0∣1

AND33 NAND32 NAND31 NAND30
1 0 1 0

13



14



Problem 9: Constant Multiplication

Using the CSD representation, design a multiplier for C ⋅ X, where C is a constant and X is a
signed 4-bit input to the circuit. For your circuit, let C = 29. Show your circuit to the FA
level of detail.

Solution:

Quickly, let’s review what CSD is doing. It reduces that number of bits in a bit string to
represent a number. This correlates directly hardware necessary to perform an operation like
multiplication. It is based upon the principle that any string of 1’s with length greater than 2
can be represented by a bit string with the MSb set with a positive weight, and the LSb set
witha negative weight. A simple example is 7 (0111 in binary). Mathemically, 7 = 8-1. 8 is
1000 in binary and 1 is 0001 in binary. Therefore, 1001̄ represents 7 in CSD encoding. This
represents for all numbers regardless of position in bit string i.e. (3, 15, 127, etc).

The binary representation for 29 is 00011101. In CSD encoding, 29 is 001001̄01. See the figure
below which visually shows the alignment of the partial products. Therefore, we only need
three full subtractors versus 8 full adders if CSD encoding was not used.

Since X is signed, it must be signed extended the full bit width of the product. A naive solution
would be to negate 4 ∗X and sum all the partial products. However, since we already need
to perform an addition we can cleverly combine 2’s complement step with the addition by
negating the bits of 4 ∗X and let the very first carry in for the adder be 1.

15



Problem 10: CSA + CPA Annotation

Using CSAs and a final CPA step, design and draw a circuit to calculate the following: 1 + 2 + 5 +
2 + 4 + 1. You must annotate your circuit showing all intermediate values.

Solution:

16



Problem 11: Parallel Prefix Adder

Draw out the circuit diagram for a 7-bit parallel prefix adder. Drawn in the style of the example
on slide 26 from the Adder lecture.

Solution:

17


