
EECS 151/251A Homework 8

Due Monday, April 8th, 2024

Introduction

This homework is meant to test your understanding of the RISC-V architecture as well as the
design of memory blocks. There are 8 questions. Please check Ed first if you have any questions.

Below is a list of RISC-V instructions that you can use for problems 1 and 2.

Figure 1: RISV Instruction set

1



Problem 1: Enabling Instructions

Ignore the FENCE, ECALL, and EBREAK instructions. For the other instructions, which in-
structions would not be possible to execute on the datapath presented in class for the single-cycle
processor we showed in class (Lecture 15 slide 15). For each instruction that cannot be run, please
explain what signals/processing units are missing, and how you can modify the datapath to enable
them. To clarify any instructions you are unfamiliar with, you can use the RISC-V Instruction
Manual (https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf). You can assume the
memory is byte-addressable.

Solution:

You are unable to do the LB, LH, LBU, or LHU instructions as you must have a signal to only
grab a piece of a full word and then extend it. In order to fix this, you need to append a data
splicer and sign extender after the memory unit that additional takes in an UN signal in order
to zero-extend for LBU and LHU.

The current datapath cannot currently do a LUI or AUIPC instruction either as the ImmGen
sign extends from the left. In these cases, we just need an additional signal to zero extend
from the right (or left shift by 12 bits).

2



Problem 2: Encoding Instructions

Let’s assume you wanted to allow a more compact encoding of each instruction (and didn’t care
about all instructions being the same size, 32-bits), but needed to retain the same size immediates
for each instruction that uses one. List each instruction that can be minimized from 32-bits, and
explain how the instruction is encoded.

Solution:

1. R type ALU instructions. Let us set the OpCode to be 1-bit (0) and so then the total
instruction is 1-bit opcode + 3-bit ALU op + 3*5 register addresses = 19 bits.

2. I type ALU instructions. Opcode is still 1-bit, so that saves us 6 bits, giving us 26 bits.
The Shift instructions don’t use the full immediate space, so they will use 20 bits.

3. Let Stores and Loads use the Opcode 10 (note that cannot do 01, since opcode of 0 alone
is used for ALU instructions). This saves us 5 bits, giving us 27 bits.

4. Let branches have an opcode of 110 (again can’t use 0 or 10). The type of branch is still
indicated by the 3-digit ALU op, so we can save 4 bits, giving us 28 bits.

5. J, JAL, JALR, LUI, and AUIPIC have the opcodes ranging from 111000 - 111111. This
saves us 1 bit giving us 31 bits. For JALR, we no longer need the ALU op, so that
becomes 29 bits.

3



Problem 3: Implementing Multiply Add

How could you add an FMA (fused multiply add) instruction to the ISA. And FMA takes 3
registers, r1, r2, and rd and does rd = r1*r2 + rd. Please explain the instruction encoding for this
operation, as well as what signals and units (if any) you would add to the single-cycle datapath.
Give 2 potential solutions to this problem and their trade-offs relative to each other.

Solution:

There are several solutions.

1. Add a multiply unit that takes in r1 and r2 and write back to a temp register. Then on
the next cycle add the temp register to rd and write back to rd.

2. Add a multiply unit and an accumulator. First, write r1 * r2 to the accumulator and
on the next cycle add rd and write back to rd. Need to have a signal on the accumula-
tor unit that specifies whether you accumulate or overwrite the current contents of the
accumulator.

3. Add a 3rd read port to the register with your multiply unit. You can grab r1, r2, and rd
and perform the entire operation in one cycle.

4. Break up the multiply into several additions and shifts. By adding just an accumulator
unit, you can perform both the multiplication and the last addition.

In terms of tradeoffs, options 1 and 2 are very similar. Option 1 requires no accumulator unit,
but does require you to keep a register slot available just for temporary use. Option 3 requires
by far the most complex design. In addition, this may lengthen your critical path, and make
all of register reads slower, but the latency of this instruction could be the fastest. Option 4
requires only a single accumulator unit (which you can also have as a temporary register if
you did not want to change anything about the data path). It has the longest latency for this
instruction, but does not affect your critical path or clock frequency.

4



Problem 4: Improving CPI

Assume you have the 3 stage pipeline (I, X, M). You can assume that data is available the cycle
after M. Additionally you can assume that a load spends 3 cycles in the M stage, and a store takes 2
cycles. Assume that the memory block has 2 read ports and 1 write port, but is not pipelined. This
means that at most 2 loads and 1 store can be in the M stage at once. Compute the total number
of cycles that are needed to complete the program in each of the given scenarios for the following
code block. 1. Assume that memory accesses do not go to the same location unless it is obvious
in the code (you can explicitly calculate the memory address or it is the same offset to the same
register value). The M stage, as we discussed in class, does Memory and Writeback. Instructions
must be written back in order and only one value can be written back at once. The last cycle of
M for both loads and stores finishes the memory access and does write back. Therefore, you cannot
use the respective port until the instruction is over.

addi x5 , x0 , 2

loop:

sll x4 , x4 , x5

lw x1 , 0(x4)

lw x2 , 4(x4)

lw x6 , 12(x4)

add x4 , x1 , x2

add x6 , x4 , x6

sw x6 , 12(x4)

sw x4 , 8(x4)

subi x5, x5, 1

beq x5 , x0 , done

j loop

done:

add x4 ,x4 ,x6

1. Scenario 1: You have implemented no forwarding. If data is unavailable, the only option to
deal with the hazard is to stall. Additionally, you always predict Not Taken on the branch.
If a branch is taken, the pipeline must be flushed as soon as it is resolved and the correct
instruction is loaded on the next cycle.

2. Scenario 2: You implement data forwarding. This means that data is available the cycle after
it is executed.

3. Scenario 3: You keep the forwarding from part 2 and additionally add a perfect branch
predictor, which will never take the wrong branch.

4. Scenario 4: You have the forwarding and a perfect branch predictor, and implement a
pipelined memory access. This means that loads do not have to stall if both ports are in
use. Additionally, stores also do not have to wait for each other. Note that loads that come
after a store to the same address must still wait (data hazard).

5. Scenario 5: You decide that the pipelined memory access is not worth it. Instead, you
implement a cache that holds the most recent 2 addresses accessed (via loads and stores). If
the address you try to load or store is in the cache, then the operation can be done in a single
cycle. At the beginning of the code block, the cache is empty.

5



Solution:

1. We show the table for the first loop. The rest of the program runs for another 22 cycles
to get to the X stage of the beq. On this beq, the j instruction is flushed, costing 1 cycle,
and the add is started on cycle 53 and finishes on cycle 55.

2. Data forwarding saves 7 cycles per loop, which brings us to 41 cycles.

3. We flush one time. This saves us 1 cycle bringing our total instructions to 40.

4. This saves us 1 cycle on the 3rd load and 1 cycle of the 2nd store, which saves us 2 cycles
per loop, for a total of 4 cycles. This brings our total cycles down to 36.

5. Unfortunately, we have no temporal locality in this program, as addresses are not accessed
more than once. A more effective cache would have large cache lines to take advantage
of spatial locality. So the total instructions is still 40.

6



7



Problem 5: Memory Block Design

We want to design a SRAM memory block with 1024 32-bit words. We know that in the 6T cell
the word line connects to the gate of both access transistors and each bit line connects to the s/d
node of one access transistor. We assume that the capacitance of an access transistor gate is equal
to the s/d capacitance. In our design we would like to balance the word-line/bit-line delay. How
many address bits do we need for the row decoder and how many for the column decoder?

Solution:

There are 215 bits in the SRAM cell array. Because there are 2 bit lines for every 1 word line,
each row must drive 2 access transistors while every bit line drives 1. Therefore, we must have
half as many columns as rows, so we have 28 rows and 27 columns. Because words are 32 bits,
we have 4 words in a line and need 2 bits to index them.

Therefore, you have 8 bits for row decoding, and 2 bits for column decoding.

8



Problem 6: Expanding Memory

Using as many instances of a memory block that is 256 x 16-bits, draw a circuit for a memory block
that is 1024 x 32-bits.

Solution:

9



Problem 7: Implementing a FIFO

Using the pointer based FIFO design presented in class (Lecture 17). Design the circuitry for the
the FULL and EMPTY signals in the Status Flag Logic block as well as the raddr and waddr from
the read and write pointer blocks. Assume that the FIFO that is 256 x 8-bits and using a simple
dual ported memory block.

Solution:

10



Problem 8: Pre-Decoder

Design the row decoder with 256 outputs using the pre-decoder technique discussed in lecture. You
may only use 1,2, and 3-input logic gates.

Solution:

We show the pattern for using the gates below.

11


