

EECS 151/251A Spring 2024 Digital Design and Integrated Circuits

Instructors: Wawrzynek

Lecture 10: CMOS2

Announcements

❑ Monday is an Academic Holiday ❑ New Midterm Date/Time: ❑ **Tue Mar 12 2024 7:00-10:00PM** ❑ **MOFF101, VLSB2040** ❑ Lecture Schedule change: ❑ Monday Mar 11, in-class MT review

CMOS Transistors

Transistor Strength and Symmetry

1. Transistor "strength" proportional to W/L. In digital circuits, L is almost always minimal allowed by process.

2. MOS transistors are symmetrical devices (Source and drain are interchangeable). But usually designed to be used in one direction.

For nFET, source is the node w/ the lowest voltage. For pFET source is node with highest voltage.

Circuit Layout Examples ❑ 2-input NAND

NAND gate layout from Lecture 3: CMOS Technology and Logic
Cates (Image by Preference Anind and Acapavia) Gates. (Image by Professors Arvind and Asanovic.)

Finfet layout

MOS Transistor as a Resistive Switch

Let's look beneath the abstraction: VT and Ron

MOSFET Threshold Voltage

Transistor "resistance"

❑ Nonlinear I/V characteristic:

❑ But, linearizing makes all delay and power calculations simple (usually just 1st order ODEs):

ON/OFF Switch Model of MOS Transistor

Plot on a "Log" Scale to See "Off" Current

Latest Modern Process

A More Realistic Switch

A Logic Perspective

A Complementary Switch

Remember, source is the node w/ the highest voltage.

The CMOS Inverter: A First Glance

Represents the sum of all the capacitance at the output of the inverter and everything to which it connects: (drains, interconnections gate capacitance of next gate(s))

*The Switch Inverter First-Order DC Analysis**

**First-order means we will ignore Capacitance.*

Switch logic

Static Logic Gates (most common and straight forward type of gate)

- At every point in time (except during the switching transients) each gate output is connected to either V_{DD} or V_{GND} via a low resistive path.
- The output of the gate assumes at all times the value of the Boolean function implemented by the circuit (ignoring, once again, the transient effects during switching periods).

Example: CMOS Inverter

Building logic from switches (NMOS)

(output undefined if condition not true)

Logic using inverting switches (PMOS)

(output undefined if condition not true)

Example Gate: NAND

□ pull-down network: $G = AB \Rightarrow$ Conduction to GND **□** pull-up network: $F = \overline{A} + \overline{B} = \overline{AB}$ \Rightarrow Conduction to V_{DD}

Static Complementary CMOS

PUN and PDN are dual logic networks:

series connections in the PUN are parallel connections in the PDN parallel connections in the PUN are series connection sin the PDN

PUN and PDN functions are complements:

guarantees they are mutually exclusive, under all input values, one or the other is conductive, but never both!

Example Gate: NOR

Complex CMOS Gate

 $OUT = D + A \cdot (B + C)$ $OUT = D \cdot A + B \cdot C$

Graph Models for Duals

Non-inverting logic

PUN and PDN are dual logic networks PUN and PDN functions are complementary

Switch Limitations

Tough luck …

"Static" CMOS gates

❑ Static CMOS gates are always inverting

$$
\boxed{}
$$
 AND = NAND, INV
$$
\boxed{}
$$

Transmission Gate

- ❑ Transmission gates are the way to build ideal "switches" in CMOS.
- \Box In general, for an ideal switch, both transistor types are needed:
	- ❑ nFET to pass zeros.
	- \Box pFET to pass ones.
- \Box The transmission gate is bi-directional (unlike logic gates).

$$
A \frac{\frac{1}{\frac{1}{\frac{1}{n}}}}{\frac{1}{\frac{1}{n}}}\quad B
$$
\nThen A connects to B

❑ Does not directly connect to Vdd and GND, but can be combined with logic gates or inverters to simplify many logic functions.

Transmission-gate Multiplexor

b

Compare the cost to logic gate implementation.

 \leq c

Care must be taken to not string together many pass-transistor stages. Occasionally, need to "rebuffer" with static gate.

4-to-1 Transmission-gate Mux

❑ The series connection of passtransistors in each branch effectively forms the AND of s1 and s0 (or their complement).

❑ Compare cost to logic gate implementation

Any alternate solutions?

Alternative 4-to-1 Multiplexor decoder

❑ This version has less delay from in to out.

❑ In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

Variations:

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common node or wire. Only one circuit at a time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

а C $h -$

If $s=1$ then $c=a$ else $c=b$

Multiplexor: Transistor Circuit for inverting-multiplexor:

Latches and Flip-flops

Positive Level-sensitive *latch*:

Latch Implementation:

When the clock is high, the latch is "transparent", when clock is low, it holds the last seen value

Positive edge-triggered flip-flop

Sensing: When clock is low on clock is low

 c lk = 0 c l $k' = 1$

clk' on clock eage **results** from p on clock edge Spring 2003 EECS150 – Lec10-Timing Page 14 revious captured value.
Previous captured value. Ready to capture new value Is outputing last

Capture: When clock goes high \overline{A} an clock goes high

 $\overline{}$ \mathbf{r} is the complete to \mathbf{r} just captured.

Return to sensing: When clock is low clk' Whan clock is In

clk' = 1

• Setup time results from delay

clk' on clock eage of the C on clock edge Spring 2003 EECS150 – Lec10-Timing Page 14 captured value.
captured value. Ready to capture new value Continue to output

Tri-state-Inverter Latch implementation

- ❑ Commonly used in standard cell flip-flops.
- ❑ More transistors than passtransistor version, but more robust.
- ❑ Lays out well with modern layout rules. *Negative Level-sensitive latch:*

