
EE141

EECS 151/251A
Spring	2024	
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 11: Timing Part 1

Announcements
❑ Midterm Date/Time:

❑ Tue Mar 12 2024 7:00-10:00PM
❑ MOFF101, VLSB2040
❑ Covers through Week6/HW6
❑ One handwritten “cheat

sheet” (both sides)
❑ Monday Mar 11, in-class MT review

2

What do ASIC/FPGA Designers need to know about physics?

❑ Physics effect:
Area ⇒ cost
Delay ⇒ performance
Energy ⇒ performance & cost
• Ideally, zero delay, area, and energy. However, the

physical devices occupy area, take time, and consume
energy.

• CMOS process lets us build transistors, wires,
connections, and we get capacitors, inductors, and
resistors whether or not we want them.

3

Performance, Cost, Power

• How do we measure performance?
operations/sec? cycles/sec?

• Performance is directly proportional to clock frequency. Although it may not be the
entire story:

 Ex: CPU performance
 = 1/ (# instructions X CPI X clock period)

4

Limitations on Clock Rate
1 Logic Gate Delay

2 Delays in flip-flops

• What must happen in one clock cycle for correct operation?
– All signals connected to FF (or memory) inputs must be ready

and “setup” before rising edge of clock.
– For now we assume perfect clock distribution (all flip-flops see

the clock at the same time).

1, 2, & 3 all contribute to
limiting the clock period.

5

3 Interconnect Delay: wires

Spring 2003 EECS150 – Lec10-Timing Page 16

Wire Delay

• Even in those cases where the

transmission line effect is

negligible:

– Wires posses distributed

resistance and capacitance

– Time constant associated with

distributed RC is proportional to

the square of the length

• For short wires on ICs,
resistance is insignificant
(relative to effective R of
transistors), but C is important.

– Typically around half of C of
gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global
control signal, etc.

– Resistance is significant,
therefore distributed RC effect
dominates.

– signals are typically “rebuffered”
to reduce delay:

v1

v4
v3

v2

time

v1 v2 v3 v4

6

Register Timing Details

❑ Three important times associated with flip-flops:
▪ Setup time - How long d must be stable before the rising edge of CLK
▪ Hold time - How long D must be stable after the rising edge of CLK
▪ Clock-to-q delay – Propagation delay after rising edge of the CLK

tset_up “setup time”

thold “hold time”

tclk_to_q delay from clk to output

input must be stable
clk

d

q

Example: Timing Analysis
Parallel to serial converter circuit

T ≥ time(clk→Q) + time(mux) + time(setup)

T ≥ τclk→Q + τmux + τsetup
a

b

clk

7

In General ...

T ≥ τclk→Q + τCL + τsetup

For correct operation:

for all paths.

❑How do we enumerate all paths?
– Any circuit input or register output to any register input or circuit output?

• Note:
– “setup time” for outputs is a function of what it connects to.
– “clk-to-q” for circuit inputs depends on from where it comes.

8

“Gate Delay”

9

1x 4x 16x

FO4

❑ Modern CMOS gate delays on the order of a
few picoseconds. (However, highly dependent
on gate design and context.)

❑ Often expressed as FO4 delays (fan-out of 4) -
as a process dependent delay metric:
▪ the delay of an inverter, driven by an inverter 4x smaller

than itself, and driving an inverter 4x larger than itself.
▪ Less than 10ps for a 32nm process. For a 7nm process FO4

is around 2.5ps.

http://en.wikipedia.org/wiki/Inverter_(logic_gate)

Process Dependent FO4 Delay

10

“Path Delay”
❑ For correct operation:

Total Delay ≤ clock_period - FFsetup_time - FFclk_to_q
on all paths.

‣ High-speed processors critical paths (worst case
paths) have around 30 FO4 delays.

11

PROCESSORS

1

CPU DB: Recording
Microprocessor History

With this open database, you can mine microprocessor trends over the past 40 years.

Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, Mark Horowitz, Stanford University

In November 1971, Intel introduced the world’s first single-chip microprocessor, the Intel 4004.
It had 2,300 transistors, ran at a clock speed of up to 740 KHz, and delivered 60,000 instructions
per second while dissipating 0.5 watts. The following four decades witnessed exponential growth
in compute power, a trend that has enabled applications as diverse as climate modeling, protein
folding, and computing real-time ballistic trajectories of angry birds. Today’s microprocessor chips
employ billions of transistors, include multiple processor cores on a single silicon die, run at clock
speeds measured in gigahertz, and deliver more than 4 million times the performance of the original
4004.

Where did these incredible gains come from? This article sheds some light on this question by
introducing CPU DB (cpudb.stanford.edu), an open and extensible database collected by Stanford’s
VLSI (very large-scale integration) Research Group over several generations of processors (and
students). We gathered information on commercial processors from 17 manufacturers and placed it
in CPU DB, which now contains data on 790 processors spanning the past 40 years.

In addition, we provide a methodology to separate the effect of technology scaling from
improvements on other frontiers (e.g., architecture and software), allowing the comparison of
machines built in different technologies. To demonstrate the utility of this data and analysis, we use
it to decompose processor improvements into contributions from the physical scaling of devices, and
from improvements in microarchitecture, compiler, and software technologies.

AN OPEN REPOSITORY OF PROCESSOR SPECS
While information about current processors is easy to find, it is rarely arranged in a manner that is
useful to the research community. For example, the data sheet may contain the processor’s power,
voltage, frequency, and cache size, but not the pipeline depth or the technology minimum feature
size. Even then, these specifications often fail to tell the full story: a laptop processor operates over a
range of frequencies and voltages, not just the 2 GHz shown on the box label.

Not surprisingly, specification data gets harder to find the older the processor becomes,
especially for those that are no longer made, or worse, whose manufacturers no longer exist. We
have been collecting this type of data for three decades and are now releasing it in the form of an
open repository of processor specifications. The goal of CPU DB is to aggregate detailed processor
specifications into a convenient form and to encourage community participation, both to leverage
this information and to keep it accurate and current. CPU DB (cpudb. stanford.edu) is populated
with desktop, laptop, and server processors, for which we use SPEC13 as our performance-measuring
tool. In addition, the database contains limited data on embedded cores, for which we are using
the CoreMark benchmark for performance.5 With time and help from the community, we hope to
extend the coverage of embedded processors in the database.

PROCESSORS

1

CPU DB: Recording
Microprocessor History

With this open database, you can mine microprocessor trends over the past 40 years.

Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, Mark Horowitz, Stanford University

In November 1971, Intel introduced the world’s first single-chip microprocessor, the Intel 4004.
It had 2,300 transistors, ran at a clock speed of up to 740 KHz, and delivered 60,000 instructions
per second while dissipating 0.5 watts. The following four decades witnessed exponential growth
in compute power, a trend that has enabled applications as diverse as climate modeling, protein
folding, and computing real-time ballistic trajectories of angry birds. Today’s microprocessor chips
employ billions of transistors, include multiple processor cores on a single silicon die, run at clock
speeds measured in gigahertz, and deliver more than 4 million times the performance of the original
4004.

Where did these incredible gains come from? This article sheds some light on this question by
introducing CPU DB (cpudb.stanford.edu), an open and extensible database collected by Stanford’s
VLSI (very large-scale integration) Research Group over several generations of processors (and
students). We gathered information on commercial processors from 17 manufacturers and placed it
in CPU DB, which now contains data on 790 processors spanning the past 40 years.

In addition, we provide a methodology to separate the effect of technology scaling from
improvements on other frontiers (e.g., architecture and software), allowing the comparison of
machines built in different technologies. To demonstrate the utility of this data and analysis, we use
it to decompose processor improvements into contributions from the physical scaling of devices, and
from improvements in microarchitecture, compiler, and software technologies.

AN OPEN REPOSITORY OF PROCESSOR SPECS
While information about current processors is easy to find, it is rarely arranged in a manner that is
useful to the research community. For example, the data sheet may contain the processor’s power,
voltage, frequency, and cache size, but not the pipeline depth or the technology minimum feature
size. Even then, these specifications often fail to tell the full story: a laptop processor operates over a
range of frequencies and voltages, not just the 2 GHz shown on the box label.

Not surprisingly, specification data gets harder to find the older the processor becomes,
especially for those that are no longer made, or worse, whose manufacturers no longer exist. We
have been collecting this type of data for three decades and are now releasing it in the form of an
open repository of processor specifications. The goal of CPU DB is to aggregate detailed processor
specifications into a convenient form and to encourage community participation, both to leverage
this information and to keep it accurate and current. CPU DB (cpudb. stanford.edu) is populated
with desktop, laptop, and server processors, for which we use SPEC13 as our performance-measuring
tool. In addition, the database contains limited data on embedded cores, for which we are using
the CoreMark benchmark for performance.5 With time and help from the community, we hope to
extend the coverage of embedded processors in the database.

PROCESSORS

15

1985 1990 1995 201020052000 2015

140

120

100

80

60

40

20

0

F0
4

/ c
yc

le

F04 Delays Per Cycle for Processor Designs

FO4 delay per cycle is roughly proportional to the amount of computation completed per cycle.

2008 2009 2010 2011 2012

1024
libquantum
overall SPEC

512

256

32

64

128

16

Libquantum Score Versus SPEC Score

This !gure shows how compiler optimizations have led to performance boosts in Libquantum.

SP
EC

 2
00

6

“Gate Delay”
❑ What determines the actual delay of a

logic gate?
❑ Transistors are not perfect switches -

cannot change terminal voltages
instantaneously.

❑ Consider the NAND gate:

▪ Current (I) value depends on: process
parameters, transistor size

‣ CL models gate output, wire, inputs to next stage (Cap. of Load)

‣ C “integrates” current (I) creating a voltage change at output

∆t ∝ CL / I

13

1 0 1
1 0 1 1 0I

CL

I

t

V

Vdd

Physical Layout determines FET strength
❑ “Switch-level”

abstraction gives a good
way to understand the
function of a circuit.
▪ nFET (g=1 ? short circuit : open)
▪ pFET (g=0 ? short circuit : open)

❑ Understanding delay
means going below the
switch-level abstraction
to transistor physics and
layout details.

14

More on transistor Current
❑ Transistors actually act like a cross between a resistor and “current source”

‣ ISAT depends on process parameters (higher for nFETs than for pFETs) and
transistor size (layout):

ISAT ∝ W/L

15

FinFets use multiple
“fins” to get wider

Transistors as water valves.
If electrons are water molecules,
transistor strengths (W/L) are pipe diameters,
and capacitors are buckets ...

A “on” n-FET
empties the bucket.

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.29

Delay Model:

CMOS

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.30

Review: General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• load factor of each input

• critical propagation delay from each input to each output for each
transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.31

Basic Technology: CMOS

° CMOS: Complementary Metal Oxide Semiconductor
• NMOS (N-Type Metal Oxide Semiconductor) transistors

• PMOS (P-Type Metal Oxide Semiconductor) transistors

° NMOS Transistor
• Apply a HIGH (Vdd) to its gate

turns the transistor into a “conductor”

• Apply a LOW (GND) to its gate
shuts off the conduction path

° PMOS Transistor
• Apply a HIGH (Vdd) to its gate

shuts off the conduction path

• Apply a LOW (GND) to its gate
turns the transistor into a “conductor”

Vdd = 5V

GND = 0v

Vdd = 5V

GND = 0v

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.32

Basic Components: CMOS Inverter

Vdd

Circuit

° Inverter Operation

OutIn

Symbol
PMOS

NMOS

In Out

Vdd

Open

Charge

Vout
Vdd

Vdd

Out

Open

Discharge

Vin

Vdd

Vdd

A “on” p-FET fills
up the capacitor
with charge.

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.29

Delay Model:

CMOS

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.30

Review: General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• load factor of each input

• critical propagation delay from each input to each output for each
transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.31

Basic Technology: CMOS

° CMOS: Complementary Metal Oxide Semiconductor
• NMOS (N-Type Metal Oxide Semiconductor) transistors

• PMOS (P-Type Metal Oxide Semiconductor) transistors

° NMOS Transistor
• Apply a HIGH (Vdd) to its gate

turns the transistor into a “conductor”

• Apply a LOW (GND) to its gate
shuts off the conduction path

° PMOS Transistor
• Apply a HIGH (Vdd) to its gate

shuts off the conduction path

• Apply a LOW (GND) to its gate
turns the transistor into a “conductor”

Vdd = 5V

GND = 0v

Vdd = 5V

GND = 0v

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.32

Basic Components: CMOS Inverter

Vdd

Circuit

° Inverter Operation

OutIn

Symbol
PMOS

NMOS

In Out

Vdd

Open

Charge

Vout
Vdd

Vdd

Out

Open

Discharge

Vin

Vdd

Vdd

!"#$%&'())* ++,!-.)'/ 012-)34$5$%& 67&1'-)

!"#$%&'(#)*(+,%-$*".(/0

1 2+.$0#$03

1 4546%,"#$3

“1”

“0” Time

Water level

!"#$%&'())* ++,!-.)'/ 012-)34$5$%& 67&1'-)

!"#$%&'(#)*(+,%-$*".(/0

1 2+.$0#$03

1 4546%,"#$3

“0”

“1”

Time
Water level

(Cartoon physics)

16

Inverter: Transient Response

tpHL = f(RonCL)
= 0.69 R n CL

(a) Low-to-high (b) High-to-low

Vin

Cin

Vin

Cin

V(t) = V0 e –t/RC
t1/2 = ln(2) × RC

17

With:
resistive approximation for FETs,
high-to-low (HL)

Turning Rise/Fall Delay into Gate Delay
• Cascaded gates:

“transfer curve” for inverter.

1 11 10 0 0 0

18

More on gate delay

‣ Transistor drains
‣ Interconnection

(wires/contacts/
vias)

‣ Transistor Gates

I

19

❑ Everything that connects to the output of a logic gate
(or transistor) contributes capacitance:

Wires
❑ As parallel plate capacitors:

C ∝ Area = width ∗ length

‣ Wires have some finite resistance, so have distributed R and C:

with r = res/length, c = cap/length, ∆t ∝ rcL2 ≅ rc + 2rc +3rc + ...

Spring 2003 EECS150 – Lec10-Timing Page 16

Wire Delay

• Even in those cases where the

transmission line effect is

negligible:

– Wires posses distributed

resistance and capacitance

– Time constant associated with

distributed RC is proportional to

the square of the length

• For short wires on ICs,
resistance is insignificant
(relative to effective R of
transistors), but C is important.

– Typically around half of C of
gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global
control signal, etc.

– Resistance is significant,
therefore distributed RC effect
dominates.

– signals are typically “rebuffered”
to reduce delay:

v1

v4
v3

v2

time

v1 v2 v3 v4

Spring 2003 EECS150 – Lec10-Timing Page 16

Wire Delay

• Even in those cases where the

transmission line effect is

negligible:

– Wires posses distributed

resistance and capacitance

– Time constant associated with

distributed RC is proportional to

the square of the length

• For short wires on ICs,
resistance is insignificant
(relative to effective R of
transistors), but C is important.

– Typically around half of C of
gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global
control signal, etc.

– Resistance is significant,
therefore distributed RC effect
dominates.

– signals are typically “rebuffered”
to reduce delay:

v1

v4
v3

v2

time

v1 v2 v3 v4

20

Wire Delay
❑Wires posses distributed resistance and capacitance
❑Time constant associated with distributed RC is proportional to the square of the length

• For short wires on ICs, resistance is
insignificant (relative to effective R of
transistors), but C is important.

– Typically around half of C of gate load is
in the wires.

• For long wires on ICs:
– busses, clock lines, global control signal,

etc.
– Resistance is significant, therefore

distributed RC effect dominates.
– signals are typically “rebuffered” to reduce

delay
• For long wires on ICs with high

currents:
– inductance is also important

v1 v2 v3 v4

v1

v4
v3

v2

time

Wire Rebuffering
• For long wires on ICs:

– busses, clock lines, global control signal, etc.
– Resistance is significant, therefore rcL2 effect dominates.
– signals are typically “rebuffered” to reduce delay:

22

unbuffered wire ∆t ∝ L2

wire buffered into N sections ∆t ∝ N * (L/N)2 + (N-1) * tbuffer
Assuming tbuffer is small,

∝ N
∆t ∝ L2/N

Speedup:

Flip-Flop delays eat into “time budget”
1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Spring 2003 EECS150 – Lec10-Timing Page 7

Example

• Parallel to serial converter:

a

b T ! time(clk"Q) + time(mux) + time(setup)

T ! #clk"Q + #mux + #setup

clk

ALU “time budget”

Spring 2003 EECS150 – Lec10-Timing Page 8

General Model of Synchronous Circuit

• In general, for correct operation:

for all paths.

• How do we enumerate all paths?

– Any circuit input or register output to any register input or circuit

output.

– “setup time” for circuit outputs depends on what it connects to

– “clk-Q time” for circuit inputs depends on from where it comes.

reg regCL CL

clock input

output

option feedback

input output

T ! time(clk"Q) + time(CL) + time(setup)

T ! #clk"Q + #CL + #setup
23

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.9

General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.11

Clocking Methodology

Clk

Combination Logic

.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Combinational Logic

Recall: Positive edge-triggered flip-flop

D Q

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Sampling
circuit

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Holds
value

24

tset_up “setup time”

thold “hold time”

tclk_to_q delay from clk to output

input must be stable
clk

d

q

Sensing: When clock is low
D Q

A flip-flop “samples” right before the
edge, and then “holds” value.

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Sampling
circuit

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Holds
value

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

clk = 0
clk’ = 1

Will capture new value
on posedge.

Outputs last value
captured. 25

Capture: When clock goes high
D Q

A flip-flop “samples” right before the
edge, and then “holds” value.

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Sampling
circuit

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Holds
value

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

clk = 1
clk’ = 0

Remembers value
just captured.

Outputs value just
captured. 26

Flip Flop delays:
D Q

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Spring 2003 EECS150 – Lec10-Timing Page 14

Delay in Flip-flops

• Setup time results from delay

through first latch.

• Clock to Q delay results from

delay through second latch.

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

clk-to-Q ?

CLK == 0
Sense D, but Q
outputs old value.

CLK 0->1
Capture D, pass
value to Q

CLK

 setup ?

clk-to-Q

 setup

27
Note: with too much fanout, second stage could fail to capture
data properly. Often output is rebuffered.

Hold-time Violations

❑ Some state elements have positive hold time requirements.
▪ How can this be?

❑ Fast paths from one state element to the next can create a violation.
(Think about shift registers!)

❑ CAD tools do their best to fix violations by inserting delay (buffers).
▪ Of course, if the path is delayed too much, then cycle time suffers.

▪ Difficult because buffer insertion changes layout, which changes path delay.

FF

clk

d q

28

tset_up “setup time”

thold “hold time”

tclk_to_q delay from clk to output

input must be stable
clk

d

q

1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Timing Analysis and Logic Delay

Some path somewhere in the design has the
longest delay and is therefore the “critical path”.

1
6
0
0

IE
E
E
JO
U
R
N
A
L
O
F
S
O
L
ID
-S
T
A
T
E
C
IR
C
U
IT
S
,
V
O
L
.
3
6
,
N
O
.
1
1
,
N
O
V
E
M
B
E
R
2
0
0
1

F
ig
.
1
.
P
ro
ce
ss
S
E
M
cr
o
ss
se
ct
io
n
.

T
h
e
p
ro
ce
ss

w
as
ra
is
ed
fr
o
m
[1
]
to
li
m
it
st
an
d
b
y
p
o
w
er
.

C
ir
cu
it
d
es
ig
n
an
d
ar
ch
it
ec
tu
ra
l
p
ip
el
in
in
g
en
su
re
lo
w
v
o
lt
ag
e

p
er
fo
rm
an
ce
an
d
fu
n
ct
io
n
al
it
y.
T
o
fu
rt
h
er
li
m
it
st
an
d
b
y
cu
rr
en
t

in
h
an
d
h
el
d
A
S
S
P
s,
a
lo
n
g
er
p
o
ly
ta
rg
et
ta
k
es
ad
v
an
ta
g
e
o
f
th
e

v
er
su
s

d
ep
en
d
en
ce
an
d
so
u
rc
e-
to
-b
o
d
y
b
ia
s
is
u
se
d

to
el
ec
tr
ic
al
ly
li
m
it
tr
an
si
st
o
r

in
st
an
d
b
y
m
o
d
e.
A
ll
co
re

n
M
O
S
an
d
p
M
O
S
tr
an
si
st
o
rs
u
ti
li
ze
se
p
ar
at
e
so
u
rc
e
an
d
b
u
lk

co
n
n
ec
ti
o
n
s
to
su
p
p
o
rt
th
is
.
T
h
e
p
ro
ce
ss
in
cl
u
d
es
co
b
al
t
d
is
il
i-

ci
d
e
g
at
es
an
d
d
if
fu
si
o
n
s.
L
o
w
so
u
rc
e
an
d
d
ra
in
ca
p
ac
it
an
ce
,
as

w
el
l
as
3
-n
m
g
at
e-
o
x
id
e
th
ic
k
n
es
s,
al
lo
w
h
ig
h
p
er
fo
rm
an
ce
an
d

lo
w
-v
o
lt
ag
e
o
p
er
at
io
n
. II
I.
A
R
C
H
IT
E
C
T
U
R
E

T
h
e
m
ic
ro
p
ro
ce
ss
o
r
co
n
ta
in
s
3
2
-k
B
in
st
ru
ct
io
n
an
d
d
at
a

ca
ch
es
as
w
el
l
as
an
ei
g
h
t-
en
tr
y
co
al
es
ci
n
g
w
ri
te
b
ac
k
b
u
ff
er
.

T
h
e
in
st
ru
ct
io
n
an
d
d
at
a
ca
ch
e
fi
ll
b
u
ff
er
s
h
av
e
tw
o
an
d
fo
u
r

en
tr
ie
s,
re
sp
ec
ti
v
el
y.
T
h
e
d
at
a
ca
ch
e
su
p
p
o
rt
s
h
it
-u
n
d
er
-m
is
s

o
p
er
at
io
n
an
d
li
n
es
m
ay
b
e
lo
ck
ed
to
al
lo
w
S
R
A
M
-l
ik
e
o
p
er
-

at
io
n
.
T
h
ir
ty
-t
w
o
-e
n
tr
y
fu
ll
y
as
so
ci
at
iv
e
tr
an
sl
at
io
n
lo
o
k
as
id
e

b
u
ff
er
s
(T
L
B
s)
th
at
su
p
p
o
rt
m
u
lt
ip
le
p
ag
e
si
ze
s
ar
e
p
ro
v
id
ed

fo
r
b
o
th
ca
ch
es
.
T
L
B
en
tr
ie
s
m
ay
al
so
b
e
lo
ck
ed
.
A
1
2
8
-e
n
tr
y

b
ra
n
ch
ta
rg
et
b
u
ff
er
im
p
ro
v
es
b
ra
n
ch
p
er
fo
rm
an
ce
a
p
ip
el
in
e

d
ee
p
er
th
an
ea
rl
ie
r
h
ig
h
-p
er
fo
rm
an
ce
A
R
M
d
es
ig
n
s
[2
],
[3
].

A
.
P
ip
el
in
e
O
rg
a
n
iz
a
ti
o
n

T
o
o
b
ta
in
h
ig
h
p
er
fo
rm
an
ce
,
th
e
m
ic
ro
p
ro
ce
ss
o
r
co
re
u
ti
li
ze
s

a
si
m
p
le
sc
al
ar
p
ip
el
in
e
an
d
a
h
ig
h
-f
re
q
u
en
cy
cl
o
ck
.
In
ad
d
it
io
n

to
av
o
id
in
g
th
e
p
o
te
n
ti
al
p
o
w
er
w
as
te
o
f
a
su
p
er
sc
al
ar
ap
p
ro
ac
h
,

fu
n
ct
io
n
al
d
es
ig
n
an
d
v
al
id
at
io
n
co
m
p
le
x
it
y
is
d
ec
re
as
ed
at
th
e

ex
p
en
se
o
f
ci
rc
u
it
d
es
ig
n
ef
fo
rt
.
T
o
av
o
id
ci
rc
u
it
d
es
ig
n
is
su
es
,

th
e
p
ip
el
in
e
p
ar
ti
ti
o
n
in
g
b
al
an
ce
s
th
e
w
o
rk
lo
ad
an
d
en
su
re
s
th
at

n
o
o
n
e
p
ip
el
in
e
st
ag
e
is
ti
g
h
t.
T
h
e
m
ai
n
in
te
g
er
p
ip
el
in
e
is
se
v
en

st
ag
es
,
m
em
o
ry
o
p
er
at
io
n
s
fo
ll
o
w
an
ei
g
h
t-
st
ag
e
p
ip
el
in
e,
an
d

w
h
en
o
p
er
at
in
g
in
th
u
m
b
m
o
d
e
an
ex
tr
a
p
ip
e
st
ag
e
is
in
se
rt
ed

af
te
r
th
e
la
st
fe
tc
h
st
ag
e
to
co
n
v
er
t
th
u
m
b
in
st
ru
ct
io
n
s
in
to
A
R
M

in
st
ru
ct
io
n
s.
S
in
ce
th
u
m
b
m
o
d
e
in
st
ru
ct
io
n
s
[1
1
]
ar
e
1
6
b
,
tw
o

in
st
ru
ct
io
n
s
ar
e
fe
tc
h
ed
in
p
ar
al
le
l
w
h
il
e
ex
ec
u
ti
n
g
th
u
m
b
in
-

st
ru
ct
io
n
s.
A
si
m
p
li
fi
ed
d
ia
g
ra
m
o
f
th
e
p
ro
ce
ss
o
r
p
ip
el
in
e
is

F
ig
.
2
.
M
ic
ro
p
ro
ce
ss
o
r
p
ip
el
in
e
o
rg
an
iz
at
io
n
.

sh
o
w
n
in
F
ig
.
2
,
w
h
er
e
th
e
st
at
e
b
o
u
n
d
ar
ie
s
ar
e
in
d
ic
at
ed
b
y

g
ra
y.
F
ea
tu
re
s
th
at
al
lo
w
th
e
m
ic
ro
ar
ch
it
ec
tu
re
to
ac
h
ie
v
e
h
ig
h

sp
ee
d
ar
e
as
fo
ll
o
w
s.

T
h
e
sh
if
te
r
a
n
d
A
L
U
re
si
d
e
in
se
p
a
ra
te
st
a
g
es
.
T
h
e
A
R
M
in
-

st
ru
ct
io
n
se
t
al
lo
w
s
a
sh
if
t
fo
ll
o
w
ed
b
y
an
A
L
U
o
p
er
at
io
n
in
a

si
n
g
le
in
st
ru
ct
io
n
.
P
re
v
io
u
s
im
p
le
m
en
ta
ti
o
n
s
li
m
it
ed
fr
eq
u
en
cy

b
y
h
av
in
g
th
e
sh
if
t
an
d
A
L
U
in
a
si
n
g
le
st
ag
e.
S
p
li
tt
in
g
th
is
o
p
-

er
at
io
n
re
d
u
ce
s
th
e
cr
it
ic
al
A
L
U
b
y
p
as
s
p
at
h
b
y
ap
p
ro
x
im
at
el
y

1
/3
.
T
h
e
ex
tr
a
p
ip
el
in
e
h
az
ar
d
in
tr
o
d
u
ce
d
w
h
en
an
in
st
ru
ct
io
n
is

im
m
ed
ia
te
ly
fo
ll
o
w
ed
b
y
o
n
e
re
q
u
ir
in
g
th
at
th
e
re
su
lt
b
e
sh
if
te
d

is
in
fr
eq
u
en
t.

D
ec
o
u
p
le
d
In
st
ru
ct
io
n
F
et
ch
.A
tw
o
-i
n
st
ru
ct
io
n
d
ee
p
q
u
eu
e
is

im
p
le
m
en
te
d
b
et
w
ee
n
th
e
se
co
n
d
fe
tc
h
an
d
in
st
ru
ct
io
n
d
ec
o
d
e

p
ip
e
st
ag
es
.
T
h
is
al
lo
w
s
st
al
ls
g
en
er
at
ed
la
te
r
in
th
e
p
ip
e
to
b
e

d
ef
er
re
d
b
y
o
n
e
o
r
m
o
re
cy
cl
es
in
th
e
ea
rl
ie
r
p
ip
e
st
ag
es
,t
h
er
eb
y

al
lo
w
in
g
in
st
ru
ct
io
n
fe
tc
h
es
to
p
ro
ce
ed
w
h
en
th
e
p
ip
e
is
st
al
le
d
,

an
d
al
so
re
li
ev
es
st
al
l
sp
ee
d
p
at
h
s
in
th
e
in
st
ru
ct
io
n
fe
tc
h
an
d

b
ra
n
ch
p
re
d
ic
ti
o
n
u
n
it
s.

D
ef
er
re
d
re
g
is
te
r
d
ep
en
d
en
cy

st
a
ll
s.
W
h
il
e
re
g
is
te
r
d
ep
en
-

d
en
ci
es
ar
e
ch
ec
k
ed
in
th
e
R
F
st
ag
e,
st
al
ls
d
u
e
to
th
es
e
h
az
ar
d
s

ar
e
d
ef
er
re
d
u
n
ti
l
th
e
X
1
st
ag
e.
A
ll
th
e
n
ec
es
sa
ry
o
p
er
an
d
s
ar
e

th
en
ca
p
tu
re
d
fr
o
m
re
su
lt
-f
o
rw
ar
d
in
g
b
u
ss
es
as
th
e
re
su
lt
s
ar
e

re
tu
rn
ed
to
th
e
re
g
is
te
r
fi
le
.

O
n
e
o
f
th
e
m
aj
o
r
g
o
al
s
o
f
th
e
d
es
ig
n
w
as
to
m
in
im
iz
e
th
e
en
-

er
g
y
co
n
su
m
ed
to
co
m
p
le
te
a
g
iv
en
ta
sk
.
C
o
n
v
en
ti
o
n
al
w
is
d
o
m

h
as
b
ee
n
th
at
sh
o
rt
er
p
ip
el
in
es
ar
e
m
o
re
ef
fi
ci
en
t
d
u
e
to
re
-

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.9

General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.11

Clocking Methodology

Clk

Combination Logic

.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Register

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.9

General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.11

Clocking Methodology

Clk

Combination Logic

.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Combinational Logic

29

Components of Combinational Path Delay
1. # of levels of logic
2. Internal cell delay
3. wire delay
4. cell input

capacitance
5. cell fanout
6. cell output drive

strength

30

Who controls the delay in ASIC?
foundary
engineer
(TSMC)

Library
Developer
(Aritsan)

CAD Tools (DC,
IC Compiler) Designer (you!)

1. # of levels synthesis HDL design

2. Internal
cell delay

physical
parameters

cell topology,
trans sizing cell selection

3. Wire delay physical
parameters place & route layout

4. Cell input
capacitance

physical
parameters

cell topology,
trans sizing cell selection

5. Cell fanout synthesis HDL design

6. Cell drive
strength

physical
parameters

transistor
sizing cell selection

31

Timing Closure: Searching for and beating down the critical path
1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Must consider all connected register pairs, paths,
plus from input to register, plus register to output.

?

• Design tools help in the search.
•Synthesis tools work to meet clock

constraint, report delays on paths,
–Special static timing analyzers accept a

design netlist and report path delays,
–and, of course, simulators can be used to

determine timing performance.
Tools that are expected to do something about the timing
behavior (such as synthesizers), also include provisions for
specifying input arrival times (relative to the clock), and
output requirements (set-up times of next stage).

32

Timing Analysis, real example

From “The circuit and physical design of the POWER4 microprocessor”, IBM J Res and Dev,
46:1, Jan 2002, J.D. Warnock et al.

netlist. Of these, 121 713 were top-level chip global nets,
and 21 711 were processor-core-level global nets. Against
this model 3.5 million setup checks were performed in late
mode at points where clock signals met data signals in
latches or dynamic circuits. The total number of timing
checks of all types performed in each chip run was
9.8 million. Depending on the configuration of the timing
run and the mix of actual versus estimated design data,
the amount of real memory required was in the range
of 12 GB to 14 GB, with run times of about 5 to 6 hours
to the start of timing-report generation on an RS/6000*
Model S80 configured with 64 GB of real memory.
Approximately half of this time was taken up by reading
in the netlist, timing rules, and extracted RC networks, as

well as building and initializing the internal data structures
for the timing model. The actual static timing analysis
typically took 2.5–3 hours. Generation of the entire
complement of reports and analysis required an additional
5 to 6 hours to complete. A total of 1.9 GB of timing
reports and analysis were generated from each chip timing
run. This data was broken down, analyzed, and organized
by processor core and GPS, individual unit, and, in the
case of timing contracts, by unit and macro. This was one
component of the 24-hour-turnaround time achieved for
the chip-integration design cycle. Figure 26 shows the
results of iterating this process: A histogram of the final
nominal path delays obtained from static timing for the
POWER4 processor.

The POWER4 design includes LBIST and ABIST
(Logic/Array Built-In Self-Test) capability to enable full-
frequency ac testing of the logic and arrays. Such testing
on pre-final POWER4 chips revealed that several circuit
macros ran slower than predicted from static timing. The
speed of the critical paths in these macros was increased
in the final design. Typical fast ac LBIST laboratory test
results measured on POWER4 after these paths were
improved are shown in Figure 27.

Summary
The 174-million-transistor !1.3-GHz POWER4 chip,
containing two microprocessor cores and an on-chip
memory subsystem, is a large, complex, high-frequency
chip designed by a multi-site design team. The
performance and schedule goals set at the beginning of
the project were met successfully. This paper describes
the circuit and physical design of POWER4, emphasizing
aspects that were important to the project’s success in the
areas of design methodology, clock distribution, circuits,
power, integration, and timing.

Figure 25

POWER4 timing flow. This process was iterated daily during the
physical design phase to close timing.

VIM

Timer files ReportsAsserts

Spice

Spice

GL/1

Reports

< 12 hr

< 12 hr

< 12 hr

< 48 hr

< 24 hr

Non-uplift
timing

Noise
impact
on timing

Uplift
analysis

Capacitance
adjust

Chipbench /
EinsTimer

Chipbench /
EinsTimer

Extraction

Core or chip
wiring

Analysis/update
(wires, buffers)

Notes:
• Executed 2–3 months
 prior to tape-out
• Fully extracted data
 from routed designs
 • Hierarchical extraction
• Custom logic handled
 separately
 • Dracula
 • Harmony
• Extraction done for
 • Early
 • Late

Extracted units
 (flat or hierarchical)
Incrementally
 extracted RLMs
Custom NDRs
VIMs

Figure 26

Histogram of the POWER4 processor path delays.

!40 !20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Timing slack (ps)

L
at

e-
m

od
e

tim
in

g
ch

ec
ks

 (
th

ou
sa

nd
s)

0

50

100

150

200

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. D. WARNOCK ET AL.

47

Most paths have hundreds of
picoseconds to spare.

The critical path

33

Timing Optimization
As an ASIC/FPGA designer you get to choose

»The Algorithm
»The Microarchitecture (block diagram)
»The HDL description of the CL blocks

(number of levels of logic)
»Where to place registers and memory

(the pipelining)
»Overall floorplan and relative

placement of blocks
34

Circuit retiming*

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The

nodes represent logic delays, with the inputs and

outputs passing through mandatory, fixed regis-

ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-

IN OUT

1 1

1 1 22

Figure 2: The example in Figure 2 after retiming.

The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y  k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w

0 is calculated, with w
0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

Circles are combinational logic,
labelled with delays.

Critical path is 5 (ignore
FF delay for now).

We want to improve it
without changing circuit
semantics.

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The

nodes represent logic delays, with the inputs and

outputs passing through mandatory, fixed regis-

ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-

IN OUT

1 1

1 1 22

Figure 2: The example in Figure 2 after retiming.

The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y  k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w

0 is calculated, with w
0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

Add a register, move one
circle. Performance
improves by 20%.

Logic Synthesis tools can do this in simple cases.

Retiming Example

36

REG REG30

REG

30

REG
REG 30

80

REG

REG

20

Clk->Q
10

Clk->Q
10

Setup
20

Critical Path Delay = 190
!Clk->Q = 10
!Setup = 20

Want to retime to here, however,
delay cannot be added to the
loop without changing the
semantics of the logic. Because
of this, many retiming tools stop
at loops.

Therefore move registers to after loop.

Retiming Example

37

REG

REG

30

REG

30

REG

REG 30

80

REG

REG
20

REG

REG

Clk->Q
10

Clk->Q
10

Setup
20

Setup
20

Critical Path Delay
= 130

!Clk->Q = 10

!Setup = 20

This is the retimed solution that
many retiming aware tools will stop at.

This is also the optimal solution when
the initial values of the registers are not given.

REG 30

REG

30

REG

REG 30

80

REG

REG

20

REG

REG

!Clk->Q = 10

!Setup = 20

If the registers have
the same initial

condition, they can
be combined and

moved into the loop

REG REG 30

REG

30

REG

REG 30

80

REG

REG
20

REG

REG

Clk->Q
10

Clk->Q
10

Critical Path Delay
= 110

!Clk->Q = 10

!Setup = 20

The register can be moved
through the NAND gate,

producing, a register at each
input. The total delay in the

loop is unchanged. Care
must be taken to properly
set the initial conditions

of the registers.

Clk->Q
10

Clk->Q
10

Setup
20

Setup
20

Retiming Example

38

REG 30

REG

30

REG

REG 30

80

REG

REG

20

REG

REG

!Clk->Q = 10

!Setup = 20

If the registers have
the same initial

condition, they can
be combined and

moved into the loop

1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Floorplaning: essential to meet timing.

(Intel XScale 80200)
39

Timing Analysis Tools
❑ Static Timing Analysis: Tools use delay models for gates

and interconnect. Traces through circuit paths.
▪ Cell delay model capture
– For each input/output pair, internal delay (output load

independent)
– output dependent delay

❑ Standalone tools (PrimeTime) and part of logic synthesis.
❑ Back-annotation takes information from results of place and

route to improve accuracy of timing analysis.
❑ DC in “topographical mode” uses preliminary layout

information to model interconnect parasitics.
▪ Prior versions used a simple fan-out model of gate loading.

delay

output load

40

Standard cell characterization

41

Timing Optimization
❑ You start with a target on clock period. What control do you

have?
❑ Biggest effect is RTL manipulation.

▪ i.e., how much logic to put in each pipeline stage.
▪We will be talking later about how to manipulate RTL for better timing results.

❑ In most cases, the tools will do a good job at logic/circuit level:
▪ Logic level manipulation
▪ Transistor sizing
▪ Buffer insertion
▪ But some cases may be difficult and you may need to help

❑ The tools may need some help at the floorpan and layout level
– Hand instantiate cells, layout generators

42

EE141

End of Lecture 11

