
EE141

EECS 151/251A
Spring	2024	
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 13: RISC-V Part 1

Project Introduction
❑ You will design and optimize a RISC-V processor
❑ Phase 1: Design and demonstrate a processor
❑ Phase 2:

▪ TBD

2

Lec13 and 14 discuss how to design the processor

What is RISC-V?
❑ Fifth generation of RISC design from UC Berkeley
❑ A high-quality, license-free, royalty-free RISC ISA

specification
❑ Experiencing rapid uptake in both industry and academia
❑ Supported by growing shared software ecosystem
❑ Appropriate for all levels of computing system, from micro-

controllers to supercomputers
▪ 32-bit, 64-bit, and 128-bit variants (we’re using 32-bit in class,

textbook uses 64-bit)
❑ Standard maintained by non-profit RISC-V Foundation

3

https://riscv.org/specifications/

Foundation Members (60++)

4

Rumble
Development

Platinum:

Gold,		Silver,	Auditors:

Instruction Set Architecture (ISA)
❑ Job of a CPU (Central	Processing	Unit, aka Core):

execute instructions
❑ Instructions: CPU’s primitives operations

▪ Instructions performed one after another in sequence
▪ Each instruction does a small amount of work (a tiny

part of a larger program).
▪ Each instruction has an operation applied to operands,
▪ and might be used change the sequence of

instruction.
❑ CPUs belong to “families,” each implementing its own

set of instructions
❑ CPU’s particular set of instructions implements an

Instruction	Set	Architecture (ISA)
▪ Examples: ARM, Intel x86, MIPS, RISC-V, IBM/

Motorola PowerPC (old Mac), Intel IA64, ...
5

If you need more
info on processor
organization.

RISC Processor Instructions in Brief

❑ Compilers generate machine instructions to execute your programs in the following way:
❑ Load/Store instructions move operands between main memory (cache hierarchy) and core register

file.
❑ Register/Register instructions perform arithmetic and logical operations on register file values as

operands and result returned to register file.
❑ Register/Immediate instructions perform arithmetic and logical operations on register file value and

constants.
❑ Branch instructions are used for looping and if-than-else (data dependent operations).
❑ Jumps are used for function call and return. 6

IM
EM

+4

rs2
rs1

rd

Re
g[
]

ALU

DM
EM

imm
PC

m
ux

Complete RV32I ISA

7

Not	in	EECS151/251A *
*

* implemented in the ASIC project

Summary of RISC-V Instruction Formats

8

Binary encoding of machine instructions. Note the common fields.

“State” Required by RV32I ISA
Each instruction reads and updates this state during execution:
❑Registers (x0..x31)

▪Register file (or regfile) Reg holds 32 registers x 32 bits/register: Reg[0]..
Reg[31]
▪First register read specified by rs1	field in instruction	
▪Second register read specified by rs2	field in instruction	
▪Write register (destination) specified by rd	field in instruction	
▪ 	x0	is	always	0	(writes	to	Reg[0]are	ignored)	

❑Program Counter (PC)
▪Holds address of current instruction

❑Memory (MEM)
▪Holds both instructions & data, in one 32-bit byte-addressed memory space
▪We’ll use separate memories for instructions (IMEM) and data (DMEM)

– Later	we’ll	replace	these	with	instruction	and	data	caches	
▪Instructions are read (fetched) from instruction memory (assume IMEM read-

only)
▪Load/store instructions access data memory

9

RISC-V State Elements

10

❑ State encodes everything about the execution status of a processor:
▪ PC register
▪ 32 registers

▪ Memory

Note: for now, and for these state elements, clock is used for
write but not for read (asynchronous read, synchronous write).

EECS150 - Lec07-MIPS

RISC-V Microarchitecture Oganization

11

Datapath + Controller + External Memory

Controller

Microarchitecture
Multiple implementations for a single instruction set architecture:

▪ Single-cycle
– Each instruction executes in a single clock cycle.

▪ Multicycle
– Each instruction is broken up into a series of shorter steps with one step per

clock cycle.
▪ Pipelined (variant on “multicycle”)

– Each instruction is broken up into a series of steps with one step per clock
cycle

– Multiple instructions execute at once by overlapping in time.
▪ Superscalar

– Multiple functional units to execute multiple instructions at the same time
▪ Out of order...

– Instructions are reordered by the hardware
12

First Design: One-Instruction-Per-Cycle RISC-V Machine

1.Current state outputs drive the
inputs to the combinational
logic, whose outputs settles at
the values of the state before
the next clock edge

2.At the rising clock edge, all the
state elements are updated
with the combinational logic
outputs, and execution moves
to the next clock cycle (next
instruction)

13

Reg[]

pc

IMEM

DMEM

Combinational	
Logic

clock

“Single	Cycle	Processor”:	On	every	tick	of	the	clock,	the	computer	executes	one	instruction

Basic Phases of Instruction Execution

1.	Instruction	
Fetch

2.	Decode	/	
Register	Read

3.	Execute 4.	Memory 5.	Register	
					Write

14

IM
EM

+4

rs2
rs1

rd

Re
g[
]

ALU

DM
EM

imm

PC
m
ux

Clock
time

Implementing	the	add	instruction

add rd, rs1, rs2

• Instruction	makes	two	changes	to	machine’s	state:	
 Reg[rd] = Reg[rs1] + Reg[rs2]
 PC = PC + 4

15

Control	Logic

Datapath	for	add

16

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]
+ alu

(RegWriteEnable)RegWEn	
(1=write,	0=no	write)

Timing	Diagram	for	add	

17

1000 1004PC

1004 1008PC+4

add x1,x2,x3 add x6,x7,x9inst[31:0]

Clock

time

+4

pcpc+4 inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

+

RegWEn

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]

clock

alu

Reg[2] Reg[7]Reg[rs1]

Reg[2]+Reg[3]alu Reg[7]+Reg[9]

Reg[3] Reg[9]Reg[rs2]

???Reg[1] Reg[2]+Reg[3]

Implementing	the	sub	instruction

sub rd, rs1, rs2

Reg[rd] = Reg[rs1] - Reg[rs2]

• Almost	the	same	as	add,	except	now	have	to	subtract	
operands	instead	of	adding	them	

• inst[30]	selects	between	add	and	subtract

18

Control	Logic

Datapath	for	add/sub

19

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0] RegWEn	
(1=write,	0=no	write)

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]

aluALU

ALUSel	
(Add=0/Sub=1)

Implementing	other	R-Format	instructions

• All	implemented	by	decoding	funct3	and	funct7	fields	and	selecting	
appropriate	ALU	function

20

Implementing	the	addi	instruction
• RISC-V	Assembly	Instruction:	

addi rd, rs1, integer
Reg[rd] = Reg[rs1] + sign_extend(immediate)
example:
addi x15,x1,-50

21

111111001110 00001 000 01111 0010011

OP-Immrd=15ADDimm=-50 rs1=1

Uses the “I-type” instruction format

Control	Logic

Review:	Datapath	for	add/sub

22

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0] RegWEn	
(1=write,	0=no	write)

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]

alu
ALU

ALUSel	
(Add=0/Sub=1)

Control	Logic

Adding	addi	to	datapath

23

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

alu
ALU

ALUSel=Add

Imm.	
Gen

0

1

RegWEn=1

inst[31:20] imm[31:0]

ImmSel=I BSel=1

I-type	Format	immediates

24

inst[31:0]

------inst[31]-(sign-extension)------- inst[30:20]

imm[31:0]
Imm.	
Gen

inst[31:20] imm[31:0]

ImmSel=I

• High	12	bits	of	instruction	(inst[31:20])	copied	to	low	12	bits	
of	immediate	(imm[11:0])	

• Immediate	is	sign-extended	by	copying	value	of	inst[31]	to	
fill	the	upper	20	bits	of	the	immediate	value	(imm[31:12])

Control	Logic

Adding	addi	to	datapath

25

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

alu
ALU

ALUSel=Add

Imm.	
Gen

0

1

RegWEn=1

inst[31:20] imm[31:0]

ImmSel=I BSel=1

Also	works	for	all	other	I-format	
arithmetic	instruction	
(slti,sltiu,andi,ori,xor
i,slli,srli,srai)	just	by	
changing	ALUSel

Implementing	Load	Word	instruction
• RISC-V	Assembly	Instruction:	

lw rd, integer(rs1)
Reg[rd] = DMEM[Reg[rs1] + sign_extend(immediate)]
example:
lw x14,8(x2)

26

000000001000 00010 010 01110 0000011

LOADrd=14LWimm=+8 rs1=2

Also uses the “I-type” instruction format

Control	Logic

Review:	Adding	addi	to	datapath

27

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

aluALU

ALUSel=Add

Imm.	
Gen

0

1

RegWEn=1

inst[31:20]
imm[31:0]

ImmSel=I BSel=1

Adding	lw	to	datapath

28

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BSel ALUSel MemRW WBSel

wb

Adding	lw	to	datapath

CS	61c 29

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=I RegWEn=1 BSel=1 ALUSel=add MemRW=Read WBSel=0

wb

All	RV32	Load		Instructions

• Supporting	the	narrower	loads	requires	additional	circuits	to	
extract	the	correct	byte/halfword	from	the	value	loaded	from	
memory,	and	sign-	or	zero-extend	the	result	to	32	bits	before	
writing	back	to	register	file.

30

funct3	field	encodes	size	and	
signedness	of	load	data

Implementing	Store	Word	instruction
• RISC-V	Assembly	Instruction:	

sw rs2, integer(rs1)
DMEM[Reg[rs1] + sign_extend(immediate)] = Reg[rs2]
example:
sw x14, 8(x2)

31

0000000 01110 00010 010 01000 0100011

STOREoffset[4:0]	
=8

SWoffset[11:5]	
=0

rs2=14 rs1=2

combined	12-bit	offset	=	80000000 01000

Uses the “S-type” instruction format

Review:	Adding	lw	to	datapath

32

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BSel ALUSel MemRW WBSel

wb

Adding	sw	to	datapath

33

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR 0

1pc
0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wbpc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=S RegWEn=0 Bsel=1 ALUSel=Add MemRW=Write WBSel=*

wb

*=	“Don’t	Care”

CS	61c 34

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=S RegWEn BSel=1 ALUSel=Add MemRW=Write WBSel=*

wb

Adding	sw	to	datapath

*=	“Don’t	Care”

Review:	I-Format	immediates

35

inst[31:0]

------inst[31]-(sign-extension)------- inst[30:20]

imm[31:0]
Imm.	
Gen

inst[31:20] imm[31:0]

ImmSel=I

• High	12	bits	of	instruction	(inst[31:20])	copied	to	low	12	bits	
of	immediate	(imm[11:0])	

• Immediate	is	sign-extended	by	copying	value	of	inst[31]	to	
fill	the	upper	20	bits	of	the	immediate	value	(imm[31:12])

I	&	S	-type	Immediate	Generator

36

imm[11:5] rs2 rs1 funct3 imm[4:0] S-opcode

imm[11:0] rs1 funct3 rd I-opcode

inst[31](sign-extension) inst[30:25]

imm[31:0]

inst[31:0]

inst[24:20]

SI

inst[31](sign-extension) inst[30:25] inst[11:7]

067111214151920242531

045101131

1 6
5

5

S

I

• Just	need	a	5-bit	mux	to	select	between	two	positions	where	low	five	bits	of	
immediate	can	reside	in	instruction	

• Other	bits	in	immediate	are	wired	to	fixed	positions	in	instruction

End of Lecture 13

37

