ircuits

ital Design and Integrated C
- Exam1 Review

ing

Instructor
Wawrzynek
Lecture 14

g

<
-~
Yol
N
z g
n» o
- N
(7p)
O
LL]
LL

-
o -
)

Qw.cn‘f,.-uh.-

= e

Announcements
aQ Midterm Exam 6-9PM

Q Latimer 120 (alternate seating)

d Exam covers Lectures 1-10 and HW 1 - 6 (Through CMOS
circuits)

d One double sided handwritten sheet of paper allowed. No
calculators.

J Neatness counts! Bring a ruler to help draw diagrams.

A Homework solutions posted through HW 6
4 No homework due today
QA HWY posted, due next Monday.

2

Review with sample slides

a Do not study only the following slides. These are just
representative of what you need to know.

Q Go back and study the entire lecture.

Moore’s Law — 2x transistors per 1-2 yr

Transistors
Per Die
4G

¥ 1965 Actual Data 1G 2G

= MOS Arrays & MOS Logic 1975 Actual Data 256m S12M

1975 Projection g Itanium™

Pentium® 4
oLt Pentium® 111

A Microprocessor [mell
Bentiume " 0Y

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Dennard
Scaling

Things we do: scale
dimensions, doping,

Vdd. Na=5210'%cm® NS =2.5x10'S%m

scaling

TABLE I
ScavLing ReEsurts ¥or CiRCulT PERFORMANCE

Device or Circuit Parameter Scaling Factor

What we get:
Device dimension fo, L, W 1/«

2
k? as many trans Doping concentration N,

Voltage V ' 1/x
at the same power Curront T 1/x

density! Capacitance e4 /! 1/x
Delay time/circuit VC/I 1/x

Power dissipation/circuit V71 1/«

Power density VI/4A 1

Power density scaling ended in 2003
(Pentium 4: 3.2GHz, 82W, 55M FETs).

Whose gates switch «
times faster!

Design Space & Optimality

“Pareto Optimal” Frontier

[J
...

Performance

(tasks/sec) high—per'fc;}'mance at high-cost

Cost (# of components)
low-performance at low-cost

Cost

dNon-recurring engineering (NRE) costs aka recurring cost
A Cost to develop a design (product) - people, tools, masks aka NRE cost
= Amortized over all units shipped /
= E.g. $20M in development adds $.20 to
each of 100M units v fixed cost

cost per IC = variable cost per IC +

volume

QRecurring costs
» Cost to manufacture, test and package a unit

» Processed wafer cost is ~$10k (around 16nm node) which yields:
- 50-100 large FPGAs or GPUs

- 200 laptop CPUs

- >1000 cell phone SoCs variable cost — cost of die + cost of die test + cost of packaging
final test yield

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written
as an expression in Boolean Algebra using AND, OR, NOT.

Egnm."eél“:t?t for [close to
pulation] implementaton]

How do we convert from one to the other?

Logic Gate Restoration
Example (look at 1-input gate, to keep it simple):

Q Inverter acts like a “non-linear” amplifier
9 The non-linearity is critical to restoration
A Other logic gates act similarly with respect to input/output relationship.

VO ot

e —|

Nad —>t

Idealize Inverter g"’ ¥ ,‘j\glz;l;agleh;,\’;enn‘;%r

Vin —DO* Vour \-? characteristic (VTC)

Register Transfer Level Abstraction (RTL)

Any synchronous digital circuit can be represented with:
. Combinational Logic Blocks (CL), plus
. State Elements (registers or memories)
cdock L] | input

e State elements are
mixed in with CL
blocks to control the

ouput flow of data.

» Sometimes used in
large groups by
themselves for “long-
term” data storage.

Implementation Alternative Summary

) , All circuits/transistors layouts optimized for
Full-custowm: application.
Standard-cell Swall function blocks/ cells” (gates, FFs) automatically
(ASIC): placed and routed.
Gate-array Partially prefabricated wafers with arrays of
(structured ASIC): |transistors customized with metal layers or vias.

, Prefabricated chips customized with loadable latches or
FPGA: fuses.
. . |Instruction set interpreter customized through

Microprocessor: software.
Dowmain Specific |Special instruction set interpreters (ex: PSP NP GPU,
Processor: TPU).

What are the important metrics of comparison?

11

Hardware Description Languages

Basic Idea: “Structural” example:

T Decod tput x0,x1,x2,x3;
- Language constructs describe circuits with ecoder (output x0,x1,x2,x

) inputs a,b)
two basic forms:
wire abar, bbar;,

= Structural descriptions: connections of inv(bbar, b);
components. Nearly one-to-one inv(abar, a);
correspondence to with schematic diagram. and(x0, abar, bbar);
.p . L. m. gram and(x1, abar, b),
» Behavioral descriptions: use high-level and (x2, a, bbar) ;
constructs (similar to conventional and(x3, a, b),
programming) to describe the circuit }
function. .
- : . . “Behavioral” example:
Originally invented for simulation. Decoder (output x0,x1,x2,x3;
- “logic synthesis” tools exist to '}”PUts a,b)
automatically convert to gate level switch [a b]
represenfqﬂon_ case 00: [x0 x1 x2 x3] = 0x8;
. . case 01: [x0 x1 x2 x3] = 0x4,
- High-level constructs greatly improves case 10: [x0 x1 x2 x3] = 0x2;
designer productivity. case 11: [x0 x1 x2 x3] = 0x1;
. endswitch;,
- However, this may lead you to falsely }
believe that hardware design can be
reduced to writing programs™ . .
g program Warning: this is a fake HDL!
*New tools and languages exist for this - called “high level synthesis”. 12

input a, b, ci;
output r, co;

assign r = a * b * ci;

assign co = a&ci + a&b + bé&cin;

endmodule

module Adder (A, B, R);,
input [3:0] A,
input [3:0] B;
output [4:0] R;

wire cl, c2, c3;

FullAdder

add0(.a(A[0]), -b(B[O0]),

addi(.a(A[1]), .b(B[1]),

add2(.a(A[2]), -b(B[2]),

add3(.a(A[3]), -b(B[3]),
endmodule

Review - Ripple Adder Example

module FullAdder(a, b, ci, r, co);

r3 re r ro

.ci(1’b0), .co(cl), .r(R[0O])),
.ci(cl), .co(c2), .r(R[1])),
.ci(c2), .co(c3), .r(R[2])),
.ci(c3), .co(R[4]), .r(R[3]));

13

Example - Ripple Adder Generator

Parameters give us a way to generalize our designs. A module becomes a “‘generator” for
different variations. Enables design/module reuse. Can simplify testing.

Declare a parameter with default value.
module Adder (A, B, R);

‘parameter N = 4; - Note: this is not a port. Acts like a “synthesis-time” constant.
3"'.'i.'npt:n': """ [N=1:0] Ay
input [N-1:0] B;
output [N:0] R;

“——Replace all occurrences of “4” with “N”.

wire [N:0] C; - variable exists only in the specification - not in the final circuit.
‘genvar iy Keyword that denotes synthesis-time operations
e For-loop creates instances (with unique names)
rgenerate— —
-ifor-{i=0; i<N; i=i+l) begin:bit |
. FullAdder add(.a(A[i], .b(B[i]), .ci(C[i]), .co(C[i+1]), .r(R[i]));
end
endgenerate
assign C[0] = 1'b0; Adder adder4 (...);
assign R[N] = C[N]; Overwrite parameter
endmodule Adder #(.N(64)) N at instantiation.

adder64 (...);

14
O

EECS151 Registers

2 All registers are “N” o |
bits wide - the value of ‘
N is specified at 1%
iInstantiation

Q All positive edge
triggered. |- et

|
|
k| (:tq

module REGISTER(q, d, clk);
parameter N = 1;

module REGISTER CE(q, d, ce, clk);
parameter N = 1;

On the rising clock edge if clock enable (ce) is O then the
register is disabled (it’s state will not be changed).

module REGISTER R(q, d, rst, clk);
parameter N = 1;
parameter INIT = {N{1'bO0}};

On the rising clock edge if reset (rst) is 1 then the state
is set to the value of INIT. Default INIT value is all 0’s.

module REGISTER R CE(q, d, rst, ce, clk);
parameter N = 1;
parameter INIT = {N{1b’0}};

Reset (rst) has priority over clock enable (ce).

15

4-bit wrap-around counter

07 1’ 2] 37 47 5’ 6] 77 81 4
9,10, 11, 12, 13, 14,
15, 0, 1, ...

value

+
-~
v

reset enable

module counter(value, enable, reset, clk);
output [3:0] value;
input enable, reset, clk;
wire [3:0] next;
REGISTER_R #(4) state (.q{value), .d(next), .rst(reset), .clk(clk));
assign next = value + 1;
endmodule // counter

Example - Parallel to Serial Converter

X3 X2 x1 x0 Id
L | | |
1 1 1 1
FF FF FF FF out
out -0 all 0 all 0 all 0 all module ParToSer (1d, X, out, clk);,
input [3:0] X;
input 1d, clk;,
clk output out;,

Specifies the
muxing with
“rotation”

wire [3:0] Q;
wire [3:0] NS,

xﬁ*a% assign NS = |
Instantiates a register (flip-flops) (1d) ? X : {Q[0], Q[3:1]};
to be rewritten every cycle

- REGISTER state #(4) |
connect output (-q(Q), .d(NS), .clk(clk));

assign out = Q[0];
endmodule

17
e

Verilog to ASIC layout flow

Q “push-button” approach

After

Synthesis [l
module adder64 (a, b, sum); =
input [63:0] a, b;
output [63:0] sum; —

assign sum = a + b;
endmodule

After Routing

After
Placement

18

FPGA Overview

Q Basic structure: two-dimensional array of logic blocks and flip-flops with a means for the user
to configure (program):

1. the interconnection between the logic blocks,
2. the function of each block.

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

v
|
}
ll
|l
|l
|l

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

=D
=P e e e e e
=
=

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

TN A I

y
Logic Logic Logic Logic Logic Logic 2
Cell Cell Cell Cell Cell Cell
Data In =1 1 ma ma ma
— — — — 10 E— 11
F=Z F=Z F=Z F=Z Logic Logic
3 5 z Cell Cell
2] 4 e 6 - 8 - ° e —

Clock |:|—| > — — — — — T oo

User Programmability

Q Latches are used to:

1. control a switch to make or
break Cross_point e |atch-based [Xilinx, InteI/AItera,]
connections in the
interconnect

2. define the function of the [Iatch\

logic blocks]
3. set user options: ! l
— within the logic blocks et
— in the input/output blocks .
+ reconfigurable
— global reset/clock ,
B . .] " - volatile
A “Configuration bit stream _ relatively large.
is loaded under user MOSIET Used
control

S

4-LUT Implementation

Q LUT size named by number of inputs INPUTS
Q n-bit LUT is implemented as a 2n x 1

memory: latch l l l l

» inputs choose one of 2» memory

locations. latch

» memory locations (latches) are 16x 1
loaded with values from user’s 16 [latch — OUTPUT
configuration bit stream.

» [nputs to mux control are the LUT

inputs.
Q Result is a general purpose “logic gate”.

= n-LUT can implement any function latch Latches programmed as
of n inputs! S~ _— of configuration bit-stream

b

21

Example Partition, Placement, and Route

ouTt IN

I' EvBN
| \
A B T=
B | D — X
= ! - B~
opD

Two partitions. Each has single output, no more than 4 inputs, and

no more than 1 flip-flop. In this case, inverter goes in both partitions.

Note: (with 4-LUTs) the partition can be arbitrarily large as long as it has not more

than 4 inputs and 1 output, and no more than 1 flip-flop.

ouT

22

FPGA versus ASIC

FPGA

total

cost ASIC

volume —>

+ ASIC: Higher NRE costs (10’s of $M). Relatively Low cost per die (10’s of $
or less).

- FPGAs: Low NRE costs. Relatively low silicon efficiency = high cost per
part (> 10’s of $ to 1000’s of $).

- Cross-over volume from cost effective FPGA design to ASIC was often in
the 100K range.

Some Laws of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and
Os and 1s (literals are left unchanged).

(F (X, %y 500y %,,0,L 4,90 = {F(x,,%,,....X,,1,0,%,+)}
Any law that is true for an expression is also true for its dual.

Operations with O and 1:
x+0=x x*1
x+1=1 x*0

|dempotent Law:
X+ X=XX X=X

Involution Law:
()" =x

Laws of Complementarity:
x+x'=1 x x’=0

Commutative Law:
x+y=y+x XY=y X

X
0

Algebraic Simplification

Cout =a’bc + ab’c + abc’ + abc
=a’bc + ab’c + abc’ + abc + abc
=a’bc + abc + ab’c + abc’ + abc
= (a’ + a)bc + ab’c + abc’ + abc
= (1)bc + ab’c + abc’ + abc
= bc + ab’c + abc’ + abc + abc
=bc + ab’c + abc + abc’ + abc
= bc + a(b’ +b)c + abc’ +abc
= bc + a(1)c + abc’ + abc
= bc + ac + ab(c’ + c)
=bc + ac + ab(1)
=pbc+ac+ab

Canonical Forms

A Standard form for a Boolean expression - unique algebraic expression directly from a
true table (TT) description.

2 Two Types:

* Sum of Products (SOP)
* Product of Sums (POS)

e Sum of Products (disjunctive normal form, minterm expansion). Example:

Mintexms a b c |f £' (Ong product (and) term for each 1 in f:
a'b'c 00001 f =a'bc + ab'c’' + ab'c + abc' + abc
a'b'c co1/01 f'=a'b'c’ + a'b'c + a'be’

a’'bce’ 010(01

a’be 011110 (enumerate all the ways the

ab’c 100]10 function could evaluate to 1)

ab’c 1 01|10

abc’ 110(10]

— T What is the cost?

26

Karnaugh Map Method

Q Adjacent groups of 1's represent product terms
a

b 0;.] 20 1
0/ 07 b
1/ 0 [\1 oD
P 110/0
g=b
ab
ab
c \._0001 11 10 c 0001 11 10
0/0{0|A}o0 0/0]0 |71
1[0 [@ATAY 1lolo 1)
cout=ab+bc+ac f=a

Multi-level Combinational Logic

Another Example: F = abc + abd +a'c'd' + b'c'd’
b let x = ab y = c+d
c” £

b_ N X
d- ol -

Xy + x'y'

o y Incorporates fanout.

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics
Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

NAND-NAND & NOR-NOR Networks

A Mapping from AND/OR to NAND/NAND

N a) b)
DD oD
e -

Finite State Machines (FSMs)

4 FSMS i —."Yo
2 Can model behavior of any . | FSM
sequential circuit)

2 Useful representation for

designing sequential circuits
A As with all sequential circuits:
output depends on present and STATE |
past inputs
2 effect of past inputs input

represented by the current
State

2 Behavior is represented by State /

xn—-1—— —— yn-1

Transition Diagram:
= traverse one edge per clock cycle.

By-hand Design Process (b)

State Transition Table: @
present next

state | OUT|IN | state IN=1 IN=1
EVEN | 0 |0 |EVEN
EVEN | 0 |1 | ODD oDD
ODD 17 10| ODD OUT=1
ODD 1 |1 |EVEN
IN=0
Invent a code t_o represent sitates. Derive logic equations
Let 0 = EVEN state, 1 = ODD state f table (how?):
present state (ps) | OUT | IN |next state (ns) rom table (how?).
0 0 |0 0 ouT = PS
0 o |1 1 NS = PS xor IN
1 17 |0 1
1 1 |1 0

FSM CL block rewritten

A * for sensitivity list
Lalways @*
POGIM o Normal values: used unless
next_state = IDLE; gspecified below.
lout-=1b0;
case (state)
IDLE : if (in == 1'bl) next_state = S0;
S0 : if (in == 1b1) next state = s1; Within case only need to
s1 : begin - specify exceptions to the
out = 1'bl; normal values.
if (in == 1’bl) next state = S1;
end
default: ;
endcase Note: The use of “blocking assignments” allow signal
end values to be “rewritten”, simplifying the specification.

Endmodule

FSM Moore and Mealy Implementation Review

Moore Machine Mealy Machine
input value input value/output values
STATE
[output values]
inputs:
B . CL inputs —— |+ w outputs
@l
present state - hext state
present state$—+— FFs next state

FFs [——

» (CL = outputs

One-hot encoded combination lock

ENTER &
correct code

RST 0 RST 5:)_
BaD1 — RST
COM1 ——q = ENT w B >~
ENT ——— JAN ERROR
RST_ - ENT
COMz
RST
START
ENT
RST COMz —
RST RST —C OPEN
oK1 —$ OKz -
AN N
RST —

Final product ...

“The planar
process”

Jean Hoerni,
Fairchild
Sewmiconductor
1958

Top-down view:

Physical Layout

a How do transistor

circuits get “laid out”

as geometry?

4 What circuit does a
physical layout
implement?

Q2 Where are the
transistors and wires
and contacts and
vias?

NAND Gate Layout

Pmllcl PMOS Transistors

N P-Diffusion
wire connects

(in N-well)
PM & NMOS gates

b
\
Output on
Metal 1-Diffusion Metal-1

Contact —*
’ N-Diffusion

1

Series NMOS Transistors

Complex CMOS Gate

OUT=D+A-(B+C) OUT=D+*A+B-C

e B
A C =

ouT
A —
B [C

4-to-1 Transmission-gate Mux §7 §7
A The series connection of pass-transistors
in each branch effectively forms the AND N I e
of s1 and s0 (or their complement). in0o0 1t
T Ty
' Compare cost to logic gate | L ==
implementation ot 1
| JRAT I
t— 4
in10 _j
7 7
in11 _j
B I

Tri-state Buffers
Tri-state Buffer: IN~>— ouT

OE
a1 Z ’_—_—7mpedance” (output 3
1 1 1 disconnected) o |
en —
en —— out

Variations: n{>0— F—ou i

|N—[>0—0UT INAI?OUT
OF OE IN | OUT OE IN | OUT .
7 E‘ T =7 '13‘ 7 v
1 110 1 -1z transmission gate

useful in
implementation

Inverting buffer Inverted enable

Positive edge-triggered flip-flop

—D Q| — Aflip-flop “samples” on the positive
clock-edge, and then “holds” value.

! Sampling Holding

latch latch
clk clk’
O O
b—1 |>O_| 04— H—[>O—DO—<— Q
R clk B oIk
clk’ e clk L
T L T L
i — i —
o A

clk’ clk

