=
=
=
@)
3 AN
e
© 2t
& = S
L C 7
= r S5
o 5 % @
5 & S SO0
8.5 . E © O
mA_..Wb .rW rOB
v +
5OD 5 2 = -
S £ 2 2§ eMa
C.n.alo 5 9 |
Epm 2
ES.--.

chip large

n .
() O O
S w'5H o £
OOO.W..N
1 c
£E -39
SCETEZS
(o) OWRr
w— O o
S E o
T = -_)
,esmbeﬁlv
w S 0w 0 __
S0 O ® VW ©
ptpe-I
stmcc
29 0598
O =0aown
7 7

e Ow_htl
-~ e e ST
S W N

e e B o
o e &

DRAM Packaging, Apple M1

Two DRAM chips
on same package
as system SoC

» 128b databus,
running at 4.2Gb/s

*68GB/s bandwidth

1-Transistor DRAM Cell

Q For sufficient Cs in small
area, special IC process is
used

Q Cell reading is destructive,
therefore read operation
always is followed by a
write-back

Q Cell looses charge (leaks
away in ms - highly
temperature dependent),
therefore cells occasionally

need to be “refreshed” using

read/write cycle

BL
WL ~ Write 1 Read 1
| WL
! M, X GND Vop — VT\K
Cy |
v |
-+ \ BL_/L_/@
2 2
_,__0 Voo/ sensing Vop!
C . .
PET Special built
= capacitor V= 0o0r (Vpp=V5)

Write: Cs is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Cy<<Cg Voltage swing is small; typically around 250 mV or less.

.

Advanced 1T DRAM Cells

filling Poly

i Substrate

Trench Cell Stacked-capacitor Cell

No longer common Common

DRAM Sub-array

\' Wordline dr

ivers V

eeeee

Array
dline drivers ,.

Organization
Y wordine arversY

e fee
e e

A Unlike SRAM, DRAM is
“single-sided” read/write

Q But sense-amps like
dual-rail

Q “split bit lines” is
standard practice

Figure 2.6 from The DRAM Array | Semantic Scholar °

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.semanticscholar.org%2Fpaper%2FThe-DRAM-Array-Keeth-Baker%2F3af215164edd3c2dea8f80da37276ba1474b3fd3%2Ffigure%2F29&psig=AOvVaw3oqFOFIRRVC2zvDm59ksyu&ust=1710986115614000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCJjjzJDegYUDFQAAAAAdAAAAABAp

Latch-Based Sense Amplifier (DRAM)

BL

Bit lines equalized, with EQ, and precharged to Vdd/2
Sense amp initialized to its meta-stable point with EQ
Once adequate voltage gap created, sense amp
enabled with SE

Positive feedback quickly forces output to a stable
operating point.

With row select kept on, cell gets “refreshed”

Bit line from inactive array below/above used as
reference for differential sensing.

")
2 o e
5 » & =
= =9 2 =
BWne - 2
= S O
> T2 e 9
O t = ¢ o
m W.WS m%Wd
_kaA @)
= O% < g0
© 58329950
= = O LLO=a
.,..‘.,.

S S

lllll

rrrrr

sl o o
&
A% e ®

ed memory

Multi-port

. MM“'I:'Q.P.’." — — S >
o e e N

S ——— ﬂ'..’ﬂtr.ﬂﬂrll

e g

Memory Architecture Review

2 Word lines used to select a row for

2L—K Bit line

reading or writing L i Storage cell
d Bit lines carry data to/from periphery AK+_1_: % L H—/ —————— Word line
a2 Core aspect ratio keep close to 1 to > 2 : |

help balance delay on word line Ayl @ L :

versus bit line T~ .
2 Address bits are divided between Sib ¥ ‘}li’ {'/it_{} o

the two decoders C{Te{; H?; : fj‘ {}m{;rs
J Row decoder used to select word Ao a c 1‘ 'd 'd /

Ilne AK_l 0111‘111‘1¢ ecodaer
2 Column decoder used to select one Input-Output

or more columns for input/output of (M bits)

data

10
O

Multi-ported Memory

Q Motivation:
= Consider CPU core register file:
— 1 read or write per cycle limits
processor performance.
— Complicates pipelining. Difficult
for different instructions to

simultaneously read or write
regfile.

— Common arrangement in pipelined
CPUs is 2 read ports and 1 write
port.

— Another example: I/O data
buffering:

disk or network interface

@ data | cpu

— | buffer|—

Douta

Dual-port
Memory

Din b Doutb
WE

* dual-porting allows both
sides to simultaneously
access memory at full
bandwidth.

11

Dual-ported Memory Internals

Q Add decoder, another set of read/write logic,
bits lines, word lines:

» Example cell: SRAM

] WL,
dec,|| dec,| | cell ¢ - — .
| arra l L T l WL,
- y e
HEEEEE .
r/w logic
r/w logic b b b~ b,
2 1 1 2
address * Repeat everything but cross-coupled inverters.

ports data ports » This scheme extends up to a couple more
ports, then need to add additional transistors.

Memory Blocks

ing

Combin

- et i,
e e

e e e M o

Building Larger Memories

Bit cells

(1]

Bit cells

Bit cells

(1]

Bit cells

/0

/O

l{e]

/10

Bit cells

Bit cells

n o O

n o O

Bit cells

Bit cells

Bit cells

Bit cells

n o O

n o O

Bit cells

Bit cells

/10

/0

IO

l{e]

Bit cells

o O

Bit cells

Bit cells

o O

Bit cells

M Large arrays constructed by
tiling multiple leaf arrays, sharing
decoders and I/O circuitry

M e.g., sense amp attached to
arrays above and below

M | eaf array limited in size to
128-256 bits in row/column due
to RC delay of wordlines and
bitlines

B Also to reduce power by only
activating selected sub-bank

M |n larger memories, delay and
energy dominated by I/O wiring

Cascading Memory-Blocks

How to make larger memory blocks out of smaller ones.

Increasing the width. Example: given 1Kx8, want 1Kx16

WE
10
A[9:0] —1+—<>| A WE
Dout |1 Dout[15:8]
Din[15:8] > Din 8
10
A WE
Dout —=“—> Dout[7:0]
Din[7:0] ——#» Din 8

15

Cascading Memory-Blocks

How to make larger memory blocks out of smaller ones.

Increasing the depth. Example: given 1Kx8, want 2Kx8

WE
C_l—'—i
10
A:0]—+slA VE t— A[10]
Dout >
Din[7:0] —+—4*{ Din 8
® 1
(o= o — Dout[7:0]
10
Ol WE
Dout [—>"
7> Din 8

Adding Ports to Primitive Memory Blocks

Adding a read port to a simple dual port (SDP) memory.
Example: given 1Kx8 SDP, want 1 write & 2 read ports.

WE
[
10 10
A[9:0] ——— A WE Ale“—T—A
Din /8’» Din Dout /; » Dout
[
10 10
—<> A WE Al&——A
—v:- Din Dout —»ﬁ» Dout

17

Adding Ports to Primitive Memory Blocks

How to add a write port fo a simple dual port memory.
Example: given 1Kx8 SDP, want 1 read & 2 write ports.

WE] A
10 WE 10
Al1—= A A [€<—A ,
residency(A)
Din v:' Din Dout /; > Pout
WE] —{1
— Dout
10 WE 10 —0
A0— A Ale—A o0 T IKXT
A1—> A
—{WE
Din —4*{ Din Dout [—-<—> Dot {—Ipin Aler— read address
8 10
AOi CVE Dout —=—> residency(A)
0—> Din

18

First-in-first-out (FIFO) Memory

Q Used to implement queues.

QThese find common use in computers and
communication circuits.

QGenerally, used to “decouple” actions of
producer and consumer:

starting state

c\bla

after write

after read

Producer can perform many writes
without consumer performing any
reads (or vis versa). However,
because of finite buffer size, on
average, need equal number of
reads and writes.

Typical uses:

— interfacing I/0O devices.
Example network interface.
Data bursts from network,
then processor bursts to
memory buffer (or reads one
word at a time from interface).
Operations not synchronized.

— Example: Audio output.
Processor produces output
samples in bursts (during
process swap-in time). Audio
DAC clocks it out at constant
sample rate.

FIFO Interfaces

Q After write or read operation, FULL and
EMPTY indicate status of buffer.

Q Used by external logic to control its own
reading from or writing to the buffer.

Q FIFO resets to EMPTY state.

A HALF FULL (or other indicator of partial

fullness) is optional.

DIN

WE
—|FULL
HALF FULL
—EMPTY
RE

T DOUT

RST

FIFO

CLK

“Circular buffer” implementation:

* Address pointers are used internally to keep
next write position and next read position

into a dual-port memory.

write ptr

|__read ptr

« If pointers equal after write = FULL:

write ptr |

| _read ptr

« If pointers equal after read = EMP

TY:

write ptr |

| _read ptr

Note: pointer incrementing is done “mod size-of-buffer”

Xilinx Virtex5 FIFOs

Q Virtex5 BlockRAMS include dedicated circuits for FIFOs.
Q Details in User Guide (ug190).
Q Takes advantage of separate dual ports and independent ports clocks.

|
WRCOUNT -] waddy faddr |~ RDCOUNT
: Write Block Read | |
| |Pointer RAM Pointer :
| |
| |
I 1 3 13 |
| 8 1% |8 [
DIN/DINP —| 5 | ‘—~ DO/DOP
=}
| > |
WRCLK —! | RDCLK
WREN I Status Flag ! RDEN

| Logic i

RST — |
|

|

|

|

|

|

|

|

|
]

|
T
-
-
-—

|

|

|

|

|

|

|

L

TIN4LSONTVY

ug180_4_27_061906

Memory on FPGAs

o —
S e 5
(4 tl

Virtex-5 LX110T
memory blocks.

Distributed RAM
using LUTs among
the CLBs.

A SLICEM 6-LUT ... (‘distributed RAM” aka “LUT RAM”)

Memory data input

Normal
1 5/6-LUT
Normal [©2 outputs.
6-LUT 4As
inputs. 44 06 Memory
A3 e | data input.
A2 oI
™ MC31 |
o WAT-WAS Control output for
Memory 4 War chaining LUTs to
write WAB make larger memories.
address

Synchronous write / asychronous read

Simple Dual Port - 1 read / 1 write port
O

Example Distributed RAM (LUT RAM)

------------------------ / Example configuration:
| Single-port 256b x 1,

o e registered output.

WE —+
1

© SPRAME4 v
on 08
: Al6:1]
WA[8:1)
CLK
WE

Figure 5-14: Distributed RAM (RAM256X1S)

Distributed RAM Primitives

RAM#X1S RAM#X1D RAM#M
D— o D— DI[A:D][#:0]
WE — WE —] — SPO WE — — DODI[#:0]
WCLK— WCLK—+ WCLK —
A[#:0] = Al#:0] =~ R/W Port ADDRD[#:0] =~ R/W Port
- C - C
* Single-Port 32 x 1-bit RAM DPRA[#:0] -~ Read Port ke ADDRC[#:0] -~ Read Port |— DOCI[#:0]
¢ Dual-Port 32 x 1-bit RAM - =
« Quad-Port 32 x 2-bit RAM ADDRBI[#:0] -~ Read Port — DOBJ[#:0]
¢ Simple Dual-Port 32 x 6-bit RAM - C

ADDRA[#:0] ~— Read Port |— DOA[#:0]

¢ Single-Port 64 x 1-bit RAM
¢ Dual-Port 64 x 1-bit RAM

* Quad-Port 6 x 1-bit RAM All are built from a single slice or less.
¢ Simple Dual-Port &% x 3-bit RAM

® Single-Part 128 -5 RAM Remember, though, that the SLICEM LUT

¢ Dual-Port 128 x 1-bit RAM
« Single-Port 256 x 1-bit RAM is naturally only 1 read and 1 write port.

UG190_5_32 112108

27

Distributed RAM Timing

RAM
DX > DI
DI %E DI2 o6 |———[DD
Dinput > Al6:0] 1 2 3 4 5 6 7
t—{ WA[6:0] - Twe — | | | | |
CLK D> CLK 05— DMUX | | | | | | |
wekb=> WE | TWPH I | I | | I
= "1 TweLl I I I I I
RAM I b= I I I I I
x> Kk___ SN S\
Do DI2 og——1IOC | | | | | | |
Cinput O C&i[glO] _.I [e—Tas | | | | | |
Aok osl—————>omux ‘(ANBJDDCI}% 3 X 2z X 5 Y
e —>' |— | I I
' L TDS 1 ! L JI ! L
AX/BX/CX/DX
RAM oy X XXX o X X o XXX
BX [DI | | T | | | | | |
s SE 2;:01 OB - gl T ws Tio | | | I Tio |
input :
inp |t WE (: \ | / : : : | |
| cLk 05— BMUX
T
WE DATA_OUT _’: SHCI'(O J | : % : % : |
A/B/C/D \ 1, MEM [1 0, >< MEM!E!
RAM Output | | | | | |
AX [DIt . WRITE | READ WRITE | WRITE , WRITE |, READ !
A D— DI2 06— 1A
Ainput O A[6:0] UG190_5_28_050505
L{was:0
] cG[< I s D AMUX
WE

UG180_5_27_050505

Figure 5-27: Simplified Virtex-5 FPGA SLICEM Distributed RAM

Block RAM Overview

CASCADEOUTLATA
CASCADEOUTREGA

CASCADEOUTLATB
CASCADEOUTREGB

[Lsororsoam [

—~——=| DIA
——| DIPA
——<~—=| ADDRA
——| WEA
—| ENA
— | SSRA

— | >CLKA
~——————=| REGCEA

———=| DIB
—<—=| DIPB
—<—{ ADDRB
—F—= WEB

— | ENB

—— | SSRB

— > CLKB
— | REGCEB

Port A

DOA ——

DOPA p—r—

36 Kb
Memory
Array

DOB [
DOPB |——

Port B

I

CASCADEINLATA
CASCADEINREGA

i

CASCADEINLATB
CASCADEINREGB

ug0180_4_01_C32106

36K bits of data total, can be configured as:
» 2 independent 18Kb RAMSs, or one 36Kb RAM.

Each 36Kb block RAM can be configured as:

» 64Kx1 (when cascaded with an adjacent 36Kb block
RAM), 32Kx1, 16Kx2, 8Kx4, 4Kx9, 2Kx18, or 1Kx36
memory.

Each 18Kb block RAM can be configured as:

» 16Kx1, 8Kx2, 4Kx4, 2Kx9, or 1Kx18 memory.
Write and Read are synchronous operations.

The two ports are symmetrical and totally
independent (can have different clocks), sharing
only the stored data.

Each port can be configured in one of the available
widths, independent of the other port. The read
port width can be different from the write port width
for each port.

The memory content can be initialized or cleared
by the configuration bitstream.

29

Block RAM Timing

Q Optional output register, would delay appearance of output data by one cycle.
Q Maximum clock rate, roughly 400MHz.

CLK

| | | |
| yau | N\ |
WE T | | T
DI pooox X o= X e X XXXX
[[[| [
ADDR X [aa7 X [o | X [cc X [aa7
| | | |
DO 0000 | X'ewemea) | X S | X S22 | X enEME)
| | | |
| | | |
. —/ | | | |
Disables | Read | Write | Write | Read
MEM(BE)=1111 MEM(cc)=2222

Lg180_4_(3_032208

Ultra-RAM Blocks

L] [N] | e

| e

HENER S

DINA
ADDR_A
ENA
RDB_WR_A
BWE_A
INJECT_SBITERR A
INJECT_DBITERR_A
OREG_CE_A
OREG_ECC_CE_A
RST A

SLEEP

CLK

DIN_B
ADDR B

EN.B

RDB_WR B

BWE_B
INJECT_SBITERR B
INJECT_DBITERR_B
OREG_CE_B
OREG_ECC_CE_B
RST B

DOUT_A
SBITERR_A
DBITERR_A

DOUT B
SBITERR_B
DBITERR B

=
N}

[

RS

Table 2-1: Block RAM and UltraRAM Comparison
Feature Block RAM UltraRAM
Clocking Two clocks Single clock
Built-in FIFO Yes No
Data width Configurable (1, 2, 4, 9, 18, 36, 72) Fixed (72-bits)
Modes SDP and TDP Two ports, each can independently read
or write (a superset of SDP)
ECC 64-bit SECDED 64-bit SECDED
Supported in 64-bit SDP only (one ECC | One set of complete ECC logic for each
decoder for port A and one ECC encoder | port to enable independent ECC
for port B) operations (ECC encoder and decoder
for both ports)
Cascade + Cascade output only (input cascade |+ Cascade both input and output (with

implemented via logic resources)
+ Cascade within a single clock region

global address decoding)

+ Cascade across clock regions in a
column

« Cascade across several columns with
minimal logic resources

Power savings

One mode via manual signal assertion

One mode via manual signal assertion

Figure 2-1: UltraRAM URAM288_BASE Primitive

State-of-the-Art - Xilinx FPGAs

W

45nm 28nm 20nm 16nm
SPARTANW VIRTEX” VIRTEX’ VIRTEX?
7’
KINTEX! KINTEX? KINTEX?
ARTIX?
SPARTAN”
Virtex Ultra-scale
Device Name VU3P VUSP vu7P VU9P VU11P VU13P | VU27P VU29P | VU31P VU33P VU3SP VU37P
System Logic Cells (K) 862 1,314 1,724 2,586 2,835 3,780 2,835 3,780 962 962 1,907 2,852
CLB Flip-Flops (K) 788 1,201 1,576 2,364 2,592 3,456 2,592 3,456 879 879 1,743 2,607
CLBLUTs (K) 394 601 788 1,182 1,296 1,728 1,296 1,728 440 440 872 1,304
Max. Dist. RAM (Mb) 12.0 18.3 24.1 36.1 36.2 48.3 36.2 48.3 12.5 12.5 24.6 36.7
Total Block RAM (Mb) 253 36.0 50.6 5.9 70.9 945 70.9 94.5 236 23.6 473 70.9
UltraRAM (Mb) 90.0 132.2 180.0 2700 270.0 360.0 270.0 360.0 90.0 90.0 180.0 270.0
HBM DRAM (GB) - - = = = = = = 4 8 8 8
HBM AXI Interfaces - - - - - - - - 32 32 32 32
Clock Mgmt Tiles (CMTs) 10 20 20 30 12 16 16 16 4 4 8 12
DSP Slices 2,280 3,474 4,560 6,840 9,216 12,288 9,216 12,288 2,880 2,880 5,952 9,024
Peak INT8 DSP (TOP/s) zial 10.8 14.2 2153 28.7 383 28.7 383 89 89 18.6 28.1
PCle® Gen3 x16 2 4 4 6 3 4 1 1 0 0 1 2
PCle Gen3 x16/Gen4 x8 / CCIX'"! - - - - - - - - 4 4 4 4
150G Interlaken 3 4 6 9 6 8 6 8 0 0 2 4
100G Ethernet w/ KR4 RS-FEC 3 4 6 9 9 12 11 15 2 2 5 8
Max. Single-Ended HP I/Os 520 832 832 832 624 832 520 676 208 208 416 624
GTY 32.75Gb/s Transceivers 40 80 80 120 96 128 32 32 32 32 64 96
GTM 58Gb/s PAMA Transceivers 32 48
100G / 50G KP4 FEC 16 /32 24/48
Extended? -1-2-2L-3 -1-2-2L-3 -1-2-2L-3 -1-2-2L-3 -1-2-2L-3 -1-2-2L-3|-1-2-2L-3 -1-2-2L-3|-1-2-2L-3 -1-2-2L-3 -1-2-2L-3 -1-2-2L-3
Industrial -1-2 -1-2 -1-2 -1-2 -1-2 -1-2 -1-2 -1-2 - - - -

S an

ST
= e -
~ - AT o M e

1977: DRAM faster than microprocessors

TIMING . i

mmem 7 Apple I (1977)
e wEn CPU: 1000 ns

REFRESH PROGRAM

""“5 e s i e s ..om..:‘““""” ; D R A M 4 0 0 ns

@, mow o
COLUMN SELECT

PROGRAMMABLE
MEMORY

(A% TO 4aK BYTES)

|5 -
[-
= =
= -
[=
24 -
coLeR - -
VIDED =
CHARACTER b SIGNAL -
? GENERATOR SEBAVILR o =
HOW AND COLUNN e =
ADORESSES = -
[-
SthAL
SedaL VIDEO c =
VIDEQ {CMan) - -
(GRAPHICS] =
-
oy)
TMUXT s NULTIPLENEM
VIDEO MODE CONTROL X C:‘H"“‘::ﬁ
VIDEO MUX

.

Steve

teve Jobs W

i Ln i . [

RAM Apple Il
4 |Complement| System

4K $1,298.00
48K 2,638.00

1980-2003, CPU speed outpaced DRAM ...

10000

1000

100

10

Q. How did architects address this gap?

Performance

A. Put smaller, faster ‘cache” memories between CPU and PRAM.

(1/latency)
Create a “mewmory hierarchy”.
The

CPU “—power

0 wall
60% per yr R
2Xin 1.5 yrs \

\ Gap grew 50% per

- DRAM Y&

/

9% per yr
/ 2Xin 10 yrs

DRAM

Review from 61C

0 Two Different Types of Locality:

= Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon.

= Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

O By taking advantage of the principle of locality:

» Present the user with as much memory as is available in the
cheapest technology.

» Provide access at the speed offered by the fastest technology.
0 DRAM is slow but cheap and dense:

» Good choice for presenting the user with a BIG memory system
0 SRAM is fast but expensive and not very dense:

= Good choice for providing the user FAST access time.

CPU-Cache Interaction

(§-stage pipeline)

vV we
bubble Decode, "adar
}D—' Register Z"’T“”,’daw
A ata
_H »addr inst D FetCh Cache hit> b
] hit> *wdata ’
PCen Primary T
Instruction MD1 MD2
Cache v
x Stall entire CPU
on data cache
! l miss
To Memory Control / / \\
| ro

Cache Refill Data from Lower Levels of
Memory Hierarchy

Nahalem Die Photo (i7, i5)

-/ Memory Controfler
a Per core: B . Y{I daia-

» 32KB L1 I-Cache (4-way
set associative (SA))

» 32KB L1 D-Cache (8-
way SA)

» 256KB unified L2 (8-way
SA, 64B blocks)

= Common L3 8MB cache

a2 Common L3 8MB cache

38

Apple M1

A 4 High-performance cores:
= 192 KB of L1 I-cache
» 128 KB of L1 data cache
» Shared 12 MB L2 cache
d 4 Energy-efficient cores:
» 128 KB L1 instruction cache,
» 64 KB L1 data cache,
= Shared 4 MB L2 cache.
Q The SoC also has a 16MB System Level Cache shared by the GPU.

39

Placement Policy

111111111122222222233
Block Number , ;53456789012345678901234567891
Memory I

Set Number 01234567

Fully (2-way) Set Direct
Associative Associative Mapped
block 12 anywhere anywhere in only into
oc set 0 block 4

can be placed

(12 mod 4) (12 mod 8)

Direct-Mapped Cache

Tag Index Block
Offset

V | Tag Data Block

— T e P 2k
e e T s e
R N S T FrSa YARAn Bn o TN SRRl b e ! i
b R Y
T 5 PR AR R AR R AR et AL LA L e DAL PR e DAL ek Ines

S
HIT Data Word or Byte

Example: 1 KB Direct Mapped Cache with 32 B Blocks

For a 2N byte cache:
= The uppermost (32 - N) bits are always the Cache Tag
= The lowest M bits are the Byte Select (Block Size = 2M)

Block address
31 9 4 0
| Cache Tag Example: 0x50 l Cache Index | Byte Select
Ex: 0x01 Ex: 0x00
Stored as part |
of the cache “state” :
Valid Bit Cache Tag Cache Data
[] Byte 31| oo Byte1 | Bytd 0 |0
0x50 v Byte 63| ¢ eo| Byte 33| Bytd 32|1 <
2
3

Byte 1023 °*e Byte 992 (31

2-Way Set-Associative Cache

Z

Tag Index Block
Offset
y4
t
k
V (Tag | Data Block V (Tag

7

b

Data Block

Set Associative Cache

N-way set associative: N entries for each Cache Index
(N direct mapped caches operates in parallel)
Example: Two-way set associative cache
= Cache Index selects a “set” from the cache
= The two tags in the set are compared to the input in parallel
= Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
B <] | T I I . N R
' :
: ‘ > :

__

\4 v v
_—-\ \Sell T Mux 0 Selo’f(Compare)«——

1" Cache Block

Fully Associative Cache

V,Tag | Data Block

B e R R R b
Patat at ot ot ot o]

o T T T et

— —\

e T T
L'.l.-- LLLLLLLLLL
TTEO~—0 J >

HIT

s
oy
"u :.'-

.
-
.
~O
.
-
.
0
-
.
-
.
-
}

N+

SRR AR A A e
.

aaaaaaaaaaaaaaaaaaaaa

LLLLLLLLLL

| Data

Block
Offset

0
E

——(= 1 Word
or Byte

Fully Associative

Fully Associative Cache
= No Cache Index

= For read, compare the Cache Tags of all cache entries in parallel

= Example: Block Size = 32 B blocks, we need N 27-bit comparators

31 0
Cache Tag (27 bits long) | Byte Select |
Ex: 0x01
Cache Tag Valid Bit Cache Data
——(5— [|[Byte31] < o[Byte1 [Byteo
>®<—— | || Byte 63| | Byte 33| Byte 32

t

ec

RAM Blocks and the Proj

————

S e

e T . <
e

T e T e e

Processor Design Considerations (FPGA Version)

a Register File; Consider distributed RAM (LUT RAM)

» Size is close to what is needed: distributed RAM primitive

configurations are 32 or 64 bits deep. Extra width is easily achieved by
parallel arrangements.

= LUT-RAM configurations offer multi-porting options - useful for register
files.

= Asynchronous read, might be useful by providing flexibility on where to
put register read in the pipeline.

2 Instruction / Data Memories : Consider Block RAM
» Higher density, lower cost for large number of bits
» A single 36kbit Block RAM implements 1K 32-bit words.

» Configuration stream based initialization, permits a simple “boot strap”
procedure.

48

Processor Design Considerations (ASIC Version)

a Register File; use synthesized RAM

» At this size (1k bits) synthesized is competitive with dense RAM
block

» Latch-based instead of flip-flop-based would save on area.
» Asynchronous read, might be useful by providing flexibility on
where to put register read in the pipeline.
2 Instruction / Data Caches : Use generated dense Block RAM
» Higher density, lower cost for large number of bits
= We will provide for you

49

Inferring RAMs in Verilog (FPGA)

// 64X1 RAM implementation

module ramé64X1 (clk, we, d,
input clk, we, d;

input [5:0] addr;

output q;

reqg [63:0] temp;

always @ (posedge clk)
if(we)

temp[addr] <= d; R

asSign qg = temp[addr]; |

endmodule

using distributed RAM

addr, q);

memory array.

Asynchronous read infers

LUT RAM

Verilog reg array used with
“always @ (posedge ... infers

50

Dual-rea/gl-port LUT RAM (FPGA)

// Multiple-Port RAM Descriptions
//
module v_rams 17 (clk, we, wa, ral, ra2, di, dol, do2);
input clk;
input we;
input [5:0] wa;
input [5:0] ral;
input [5:0] ra2;
input [15:0] di;
output [15:0] dol;
output [15:0] do2;
reg [15:0] ram [63:0];
always @(posedge clk)

begin
if (we)
ram[wa] <= di;
end | Multiple reference to
assign dol = ram[ral]; same array.
assign do2 = ram[ra2];
endmodule

51

Block RAM Inference (FPGA)

//
// Single-Port RAM with Synchronous Read
//
module v_rams 07 (clk, we, a, di, do);
input clk;
input we;
input [5:0] a;
input [15:0] di;
output [15:0] do;
reg [15:0] ram [63:0];
reg [5:0] read_a;
always @(posedge clk) begin

if (we)
ram[a] <= di; Synchronous read
read a <= a; i — (registered read address)
end - : infers Block RAM
assign do = ram[read_a];
endmodule

52

FPGA Block RAM initialization (FPGA)

module RAMB4 S4 (data_out, ADDR, data_in, CLK, WE);
output[3:0] data_out;
input [2:0] ADDR;
input [3:0] data_in;
input CLK, WE;
reg [3:0] mem [7:0];
reg [3:0] read_addr;

initial “data.dat” contains initial RAM
begin ; contents, it gets put into the bitfile
$readmemb ("data.dat”, mem); and loaded at configuration time.
end (Remake bits to change contents)

always @(posedge CLK)
read_addr <= ADDR;

assign data_out = mem[read_addr];

always @(posedge CLK)
if (WE) mem[ADDR] = data_in;

endmodule

53

ASIC Small Memories from Stdcell Latches

Write Address Write Data Read Address

Clk i 4
! '
CL —1

5 y Q . Can be synthesized
- Ol — g from Verilog using

9 : . S “always @(clk)”
a i a

g * Data held in g

S « transparent-low 5

< 1 latches <

.g . O

j 5 8

3 o

v
| |
Write by :
clocking latch '?
Combinational logic for
B Add additional ports by replicating read port (synthesized)
read and write port logic (multiple
write ports need mux in front of latch) Clk -1 | Optional read output latch

B Expensive to add many ports

End of Lec 17

