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DRAM

❑ Gets used for off-chip large 
inexpensive memories.   

❑ Most commonly not 
compatible with logic 
processes.  Requires 
special IC processing.



DRAM Packaging, Apple M1
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Two DRAM chips 
on same package 
as system SoC

•128b databus, 
running at 4.2Gb/s 

•68GB/s bandwidth



Write: Cs is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV or less.

1-Transistor DRAM Cell
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VBL

CS << CBL

VBIT= 0 or  (VDD – VT)

❑ For sufficient Cs in small 
area, special IC process is 
used   

❑ Cell reading is destructive, 
therefore read operation 
always is followed by a 
write-back 

❑ Cell looses charge (leaks 
away in ms - highly 
temperature dependent), 
therefore cells occasionally 
need to be “refreshed” using 
read/write cycle

Special built 
capacitor



Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench Cell Stacked-capacitor Cell

Capacitor dielectric layerCell plateWord line
Insulating Layer

IsolationTransfer gate
Storage electrode

Advanced 1T DRAM Cells
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No longer common Common 



DRAM Sub-array Organization
❑ Unlike SRAM, DRAM is 

“single-sided” read/write  
❑ But sense-amps like 

dual-rail 
❑ “split bit lines” is 

standard practice

6Figure 2.6 from The DRAM Array | Semantic Scholar

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.semanticscholar.org%2Fpaper%2FThe-DRAM-Array-Keeth-Baker%2F3af215164edd3c2dea8f80da37276ba1474b3fd3%2Ffigure%2F29&psig=AOvVaw3oqFOFIRRVC2zvDm59ksyu&ust=1710986115614000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCJjjzJDegYUDFQAAAAAdAAAAABAp


Latch-Based Sense Amplifier (DRAM)

• Bit lines equalized, with EQ, and precharged to Vdd/2 
• Sense amp initialized to its meta-stable point with EQ 
• Once adequate voltage gap created, sense amp 

enabled with SE 
• Positive feedback quickly forces output to a stable 

operating point. 
• With row select kept on, cell gets “refreshed” 
• Bit line from inactive array below/above used as 

reference for differential sensing.

EQ

VDD

BL BL

SE

SE
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Multi-ported RAM 
Combining Memory 
blocks 
FIFOs 
FPGA memory blocks 
Caches 
Memory Blocks in the 
Project

Memory Blocks
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Multi-ported memory



Memory Architecture Review
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❑ Word lines used to select a row for 
reading or writing 

❑ Bit lines carry data to/from periphery 
❑ Core aspect ratio keep close to 1 to 

help balance delay on word line 
versus bit line 

❑ Address bits are divided between 
the two decoders 

❑ Row decoder used to select word 
line 

❑ Column decoder used to select one 
or more columns for input/output of 
data



Multi-ported Memory
❑ Motivation: 

▪ Consider CPU core register file: 
– 1 read or write per cycle limits 

processor performance. 
– Complicates pipelining.  Difficult 

for different instructions to 
simultaneously read or write 
regfile. 

– Common arrangement in pipelined 
CPUs is 2 read ports and 1 write 
port.

data 
buffer

disk or network interface

CPU

– Another example: I/O data 
buffering: 

Aa 
Dina 
WEa 

Ab 
Dinb 
WEb

Dual-port 
Memory

Douta 

Doutb

• dual-porting allows both 
sides to simultaneously 
access memory at full 
bandwidth.  
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Dual-ported Memory Internals
❑ Add decoder, another set of read/write logic, 

bits lines, word lines:

deca decb cell 
array

r/w logic

r/w logic

data ports
address 
ports

• Example cell: SRAM 

• Repeat everything but cross-coupled inverters. 
• This scheme extends up to a couple more 

ports, then need to add additional transistors.

b2 b2b1 b1

WL2

WL1
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Combining Memory Blocks





Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the width.  Example: given 1Kx8, want 1Kx16
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Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the depth.  Example: given 1Kx8, want 2Kx8

16



Adding Ports to Primitive Memory Blocks
Adding a read port to a simple dual port (SDP) memory.

Example: given 1Kx8 SDP, want 1 write & 2 read ports.
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Adding Ports to Primitive Memory Blocks
How to add a write port to a simple dual port memory.
Example: given 1Kx8 SDP, want 1 read & 2 write ports.
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FIFOs



First-in-first-out (FIFO) Memory
❑ Used to implement queues.   
❑These find common use in computers and 

communication circuits. 
❑Generally, used to “decouple” actions of 

producer and consumer:

• Producer can perform many writes 
without consumer performing any 
reads (or vis versa).   However, 
because of finite buffer size, on 
average, need equal number of 
reads and writes. 

• Typical uses:  
– interfacing I/O devices.  

Example network interface.  
Data bursts from network, 
then processor bursts to 
memory buffer (or reads one 
word at a time from interface).  
Operations not synchronized. 

– Example: Audio output.  
Processor produces output 
samples in bursts (during 
process swap-in time).  Audio 
DAC clocks it out at constant 
sample rate.

starting state

after write

after read

abc

abcd

bcd



FIFO Interfaces
❑ After write or read operation, FULL and 

EMPTY indicate status of buffer. 
❑ Used by external logic to control its own 

reading from or writing to the buffer. 
❑ FIFO resets to EMPTY state. 
❑ HALF FULL (or other indicator of partial 

fullness) is optional.

• Address pointers are used internally to keep 
next write position and next read position 
into a dual-port memory. 

• If pointers equal after write ⇒ FULL: 

• If pointers equal after read ⇒ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL
HALF FULL

RST CLK

FIFO

write ptr

read ptr

write ptr read ptr

write ptr read ptr

Note: pointer incrementing is done “mod size-of-buffer”

“Circular buffer” implementation:



Xilinx Virtex5 FIFOs
❑ Virtex5 BlockRAMS include dedicated circuits for FIFOs. 
❑ Details in User Guide (ug190). 
❑ Takes advantage of separate dual ports and independent ports clocks.
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Memory on FPGAs



Virtex-5 LX110T 
memory blocks. 

Block RAMs in 
four columns.

Distributed RAM 
using LUTs among 
the CLBs.
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A SLICEM 6-LUT … (‘distributed RAM” aka “LUT RAM”)

Normal  
6-LUT 
inputs.

Normal  
5/6-LUT 
outputs.

Memory 
write 
address

Memory data input

Memory 
data input.

Control output for 
chaining LUTs to  
make larger memories.

Synchronous  write  /  asychronous read 

Simple Dual Port - 1 read / 1 write port
25



Example Distributed RAM (LUT RAM) 
Example configuration:  
Single-port 256b x 1, 
registered output.
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Distributed RAM Primitives

All are built from a single slice or less.

Remember, though, that the SLICEM LUT 
is naturally only 1 read and 1 write port.
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Distributed RAM Timing
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Block RAM Overview
❑ 36K bits of data total, can be configured as:  

▪ 2 independent 18Kb RAMs, or one 36Kb RAM.  
❑ Each 36Kb block RAM can be configured as:  

▪ 64Kx1 (when cascaded with an adjacent 36Kb block 
RAM), 32Kx1, 16Kx2, 8Kx4, 4Kx9, 2Kx18, or 1Kx36 
memory.  

❑ Each 18Kb block RAM can be configured as: 
▪ 16Kx1, 8Kx2, 4Kx4, 2Kx9, or 1Kx18 memory.  

❑ Write and Read are synchronous operations. 
❑ The two ports are symmetrical and totally 

independent (can have different clocks), sharing 
only the stored data.  

❑ Each port can be configured in one of the available 
widths, independent of the other port.  The read 
port width can be different from the write port width 
for each port.  

❑ The memory content can be initialized or cleared 
by the configuration bitstream. 
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Block RAM Timing
❑ Optional output register, would delay appearance of output data by one cycle. 
❑ Maximum clock rate, roughly 400MHz.
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Ultra-RAM Blocks
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State-of-the-Art - Xilinx FPGAs
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Virtex Ultra-scale
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Caches



1977: DRAM faster than microprocessors
 Apple II (1977)

Steve  
WozniakSteve Jobs

 CPU: 1000 ns
DRAM: 400 ns

34



1980-2003, CPU speed outpaced DRAM ...

10

DRAM

CPU

Performance 
(1/latency)

100

1000

1980 20001990

Year

Gap grew 50% per 
year

Q. How did architects address this gap? 
A. Put smaller, faster “cache” memories between CPU and DRAM.  
Create a “memory hierarchy”.

10000
The  
power  
wall

2005

CPU 
60% per yr 
2X in 1.5 yrs

DRAM 
9% per yr 
2X in 10 yrs
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❑ Two Different Types of Locality: 
▪ Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon. 
▪ Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon. 
❑ By taking advantage of the principle of locality: 

▪ Present the user with as much memory as is available in the 
cheapest technology. 

▪ Provide access at the speed offered by the fastest technology. 
❑ DRAM is slow but cheap and dense: 

▪ Good choice for presenting the user with a BIG memory system 
❑ SRAM is fast but expensive and not very dense: 

▪ Good choice for providing the user FAST access time.

Review from  61C
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CPU-Cache Interaction 
(5-stage pipeline)

PC addr inst

Primary	
Instruction	
Cache

0x4
Add

IR

D

bubble

hit?
PCen

Decode,	
Register	
Fetch

wdata
R

addr

wdata

rdata
Primary	
Data		
Cache

we
A

B

YYALU

MD1 MD2

Cache	Refill	Data	from	Lower	Levels	of	
Memory	Hierarchy

hit?

Stall	entire	CPU	
on	data	cache	
miss

To	Memory	Control

M
E



Nahalem Die Photo (i7, i5)
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❑ Per core: 
▪ 32KB L1 I-Cache (4-way 

set associative (SA)) 
▪ 32KB L1 D-Cache (8-

way SA) 
▪ 256KB unified L2 (8-way 

SA, 64B blocks) 
▪ Common L3 8MB cache 

❑ Common L3 8MB cache

L1

L2



Apple M1
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❑  4 High-performance cores:  

▪ 192 KB of L1 I-cache  

▪ 128 KB of L1 data cache  

▪ Shared 12 MB L2 cache  
❑  4 Energy-efficient cores: 

▪ 128 KB L1 instruction cache,  

▪ 64 KB L1 data cache,  

▪ Shared 4 MB L2 cache.  
❑  The SoC also has a 16MB System Level Cache shared by the GPU.



Placement Policy
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0 1 2 3 4 5 6 70     1      2     3Set Number

Cache

     Fully         (2-way) Set        Direct 
Associative      Associative         Mapped 
anywhere        anywhere in        only into 
              set 0              block 4  
                (12 mod 4)   (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9

3 3 
0 1

Memory

Block Number

block 12  
can be placed



Direct-Mapped Cache

		Tag Data	Block		V

	=

Block	
Offset

		Tag Index

	t
	k 	b

	t

HIT Data	Word	or	Byte

		2k	
lines
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For a 2N byte cache: 
▪ The uppermost (32 - N) bits are always the Cache Tag 
▪ The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part 
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
Block address

Example: 1 KB Direct Mapped Cache with 32 B Blocks



2-Way Set-Associative Cache

		Tag Data	Block		V

	=

Block	
Offset

		Tag Index

	t
	k

	b

HIT

	

		Tag Data	Block		V

Data	
Word	
or	Byte

	=

	t
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N-way set associative: N entries for each Cache Index 
▪ (N direct mapped caches operates in parallel) 

Example: Two-way set associative cache 
▪ Cache Index selects a “set” from the cache 
▪ The two tags in the set are compared to the input in parallel 
▪ Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Set Associative Cache



Fully Associative Cache
		Tag Data	Block		V

	=
Bl
oc
k	

O
ffs
et

		T
ag

	t

	b

HIT

Data	
Word	
or	Byte

	=

	=

	t
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Fully Associative Cache 
▪ No Cache Index 
▪ For read, compare the Cache Tags of  all cache entries in parallel 
▪ Example: Block Size = 32 B blocks, we need N 27-bit comparators 

:

 Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

=

=
=

=

=

Fully Associative
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RAM Blocks and the Project



Processor Design Considerations (FPGA Version)

❑ Register File: Consider distributed RAM (LUT RAM) 
▪ Size is close to what is needed:  distributed RAM primitive 

configurations are 32 or 64 bits deep.  Extra width is easily achieved by 
parallel arrangements. 

▪ LUT-RAM configurations offer multi-porting options - useful for register 
files. 

▪ Asynchronous read, might be useful by providing flexibility on where to 
put register read in the pipeline. 

❑ Instruction / Data Memories : Consider Block RAM 
▪ Higher density, lower cost for large number of bits 
▪ A single 36kbit Block RAM implements 1K 32-bit words. 
▪ Configuration stream based initialization, permits a simple “boot strap” 

procedure.
48



Processor Design Considerations (ASIC Version)
❑ Register File: use synthesized RAM 

▪ At this size (1k bits) synthesized is competitive with dense RAM 
block 

▪ Latch-based instead of flip-flop-based would save on area. 
▪ Asynchronous read, might be useful by providing flexibility on 

where to put register read in the pipeline. 
❑ Instruction / Data Caches : Use generated dense Block RAM 

▪ Higher density, lower cost for large number of bits 
▪ We will provide for you

49
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Inferring RAMs in Verilog (FPGA)
 // 64X1 RAM implementation using distributed RAM

module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

   reg [63:0] temp;
   always @ (posedge clk)
     if(we)
       temp[addr] <= d;
   assign q = temp[addr];

   endmodule

Asynchronous read infers 
LUT RAM

Verilog reg array used with 
“always @ (posedge ... infers 

memory array.
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Dual-read-port LUT RAM (FPGA)
// 
// Multiple-Port RAM Descriptions 
// 
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2); 
    input  clk; 
    input  we; 
    input  [5:0] wa; 
    input  [5:0] ra1; 
    input  [5:0] ra2; 
    input  [15:0] di; 
    output [15:0] do1; 
    output [15:0] do2; 
    reg    [15:0] ram [63:0]; 
    always @(posedge clk) 
    begin 
        if (we) 
            ram[wa] <= di; 
    end 
    assign do1 = ram[ra1]; 
    assign do2 = ram[ra2]; 
endmodule

Multiple reference to 
same array.
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Block RAM Inference (FPGA)
// 
// Single-Port RAM with Synchronous Read 
// 
module v_rams_07 (clk, we, a, di, do); 
    input  clk; 
    input  we; 
    input  [5:0] a; 
    input  [15:0] di; 
    output [15:0] do; 
    reg    [15:0] ram [63:0]; 
    reg    [5:0] read_a; 
    always @(posedge clk) begin 
        if (we) 
            ram[a] <= di; 
        read_a <= a;
    end 
    assign do = ram[read_a]; 
endmodule 

Synchronous read 
(registered read address) 

infers Block RAM
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FPGA Block RAM initialization (FPGA)
module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
   output[3:0] data_out;
   input [2:0] ADDR;
   input [3:0] data_in;
   input CLK, WE;
   reg [3:0] mem [7:0];
   reg [3:0] read_addr;

   initial
     begin
       $readmemb("data.dat", mem);
     end
   
   always @(posedge CLK)
     read_addr <= ADDR;

   assign data_out = mem[read_addr];

   always @(posedge CLK)
     if (WE) mem[ADDR] = data_in;

   endmodule

“data.dat” contains initial RAM 
contents, it gets put into the bitfile 
and loaded at configuration time.  
(Remake bits to change contents)
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Can be synthesized 
from Verilog using 
“always @(clk)”

ASIC



End of Lec 17
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