
EE141

EECS151/251A
Spring	2024	
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 20

Announcements

❑ Homework assignment 9 posted - due
next Friday

2

EE141

Outline
❑ Register Transfer Notation
❑ List Processor Example
❑ Design Optimization
❑ Resource Utilization Charts

EE141

Register Transfer Notation

Register Transfer “Level” Review

❑ At the high-level we view these systems as a collection of state elements
and CL blocks.

❑ “RTL” is a commonly used acronym for “Register Transfer Level”
description.

❑ It follows from the fact that all synchronous digital system can be
described as a set of state elements connected by combinational logic
blocks.

❑ Though not strictly correct, some also use “RTL” to mean the Verilog or
VHDL code that describes such systems.

5

Register Transfer “notation” Descriptions
❑ We introduce a notation for

describing the behavior of
systems at the register
transfer level.

❑ Can view the operation of
digital synchronous systems
as a set of data transfers
between registers with
combinational logic
operations happening during
the transfer.

RT notation comprises a set of register transfers
with optional operators as part of the transfer.
Example:
 regA ← regB
 regC ← regA + regB
 if (start==1) regA ← regC

We use “;” to separate transfers that occur on
separate cycles.
Use “,” to separate transfers that occur on the
same cycle.
Example (2 cycles):
 regA ← regB, regB ← 0;
 regC ← regA;

6

Example of Using RT Notation
ACC ← ACC + R0, R1 ← R0;
ACC ← ACC + R1, R0 ← R1;
R0 ← ACC;
 •
 •
 •

• In this case: RT notation
description is used to sequence the
operations on the datapath.

• It becomes the high-level
specification for the controller.

• Design of the FSM controller follows
directly from the RT notation
sequence. In this example (and
most other designs) the FSM
controls movement of data by
controlling the multiplexor control
signals.

7

EE141

Example of Using RT Notation
❑ Sometimes RT Notation is used as a

starting point for designing both the
datapath and the control:

❑ example:
 regA ← IN;
 regB ← IN;
 regC ← regA + regB;
 regB ← regC;
❑ From this we can deduce:

– IN must fanout to both regA and regB
– regA and regB must output to an adder
– the adder must output to regC
– regB must take its input from a mux that

selects between IN and regC

• What does the datapath look
like?

• The controller:

8

A

B

IN + C

Control points:
1. clock enable for A register
2. clock enable for B register
3. mux control

FSM controller:
4 states (one per cycle)

IN

1
0

EE141

List Processor Example

List Processor Example

❑ RT Notation gives us a framework for making high-level
optimizations.

❑ General design procedure outline:
1. Problem, Constraints, and Component Library Spec.
2. “Algorithm” Selection
3. Micro-architecture Specification
4. Analysis of Cost, Performance, Power
5. Optimizations, Variations
6. Detailed Design

10

1. Problem Specification
❑ Design a circuit that forms the sum of all the 2's complement integers stored in a

linked-list structure starting at memory address 0:

❑ Assume: All integers and pointers are 8-bit. The link-list is stored in a memory block
with an 8-bit address port and 8-bit data port, as shown below. The pointer from the
last element in the list is 0. At least one node in list.

I/Os:
– START resets to head of

list and starts addition
process.

– DONE signals completion
– R holds the final result

Note: We don’t assume nodes are aligned on 2 Byte boundaries.

11

1. Other Specifications

❑ Design Constraints:
▪ Usually the design specification puts a restriction on cost, performance, power or all.

We will leave this unspecified for now and return to it later.
❑ Component Library:
 component delay
 simple logic gates 0.5ns
 n-bit register clk-to-Q=0.5ns
 setup=0.5ns
 n-bit 2-1 multiplexor 1ns
 n-bit adder (2 log(n) + 2)ns
 memory 10ns read (asynchronous read)
 zero compare 0.5 log(n)

 (single ported memory, register has CE but no RST)

Are these reasonable?

12

Review of Register with “Clock Enable”

❑ Register with Clock Enable:

❑ Allows register to be either be loaded on selected clock positive edge or
to retain its previous value.

❑ Assume both data and CE require setup time = 0.5ns.

❑ Assume no reset input.

Functional description
only. Transistor level
circuit could have lower
input delay and fewer
transistors.

CE

CE

13

“Algorithm” Selection
❑ In this case the memory only allows one access per cycle, so the algorithm is limited to

sequential execution. If in another case more input data is available at once, then a
more parallel solution may be possible.

Assume datapath state registers NEXT and SUM.
▪ NEXT holds a pointer to the node in memory.
▪ SUM holds the result of adding the node values to this point.

 If (START==1) NEXTß0, SUMß0, DONEß0;
 repeat {
 SUMßSUM + Memory[NEXT+1];
 NEXTßMemory[NEXT];
 } until (NEXT==0);
 RßSUM, DONEß1;

This RT Notation becomes the basis for DP and controller. 14

3. Micro-Architecture #1
Direct implementation of RTL description:

Datapath

Controller

If (START==1) NEXTß0, SUMß0;
 repeat {
 SUMßSUM + Memory[NEXT+1];
 NEXTßMemory[NEXT];
 } until (NEXT==0);
RßSUM, DONEß1;

15

4. Analysis of Cost, Performance, and Power

❑ Skip Power for now.
❑ Cost:

▪ How do we measure it? # of transistors? # of gates? # of CLBs?
▪ Depends on implementation technology. Often we are just interested in

comparing the relative cost of two competing implementations. (Save this for
later)

❑ Performance:
▪ 2 clock cycles per number added.
▪ What is the minimum clock period?
▪ The controller might be on the critical path. Therefore we need to know the

implementation, and controller input and output delay. We do a design and
could later optimize if it is indeed on the critical path.

16

Possible Controller Implementation
❑ Based on this, what is the controller input and output delay?

17

One-hot FSM

4. Analysis of Performance Other paths exist for each cycle in the
loop. These are the worst case.

18

If (START==1) NEXTß0, SUMß0;
 repeat {
 SUMßSUM + Memory[NEXT+1];
 NEXTßMemory[NEXT];
 } until (NEXT==0);
RßSUM, DONEß1;

4. Analysis of Performance
❑ Detailed timing:

clock period (T) = max (clock period for each state)
T > 31ns, F < 32 MHz

❑ Observation:
COMPUTE_SUM state does most of the work. Most of the components are inactive in

GET_NEXT state.
GET_NEXT does: Memory access + …
COMPUTE_SUM does: 8-bit add, memory access, 15-bit add + …

❑ Conclusion:
Move one of the adds to GET_NEXT.

19

EE141

List Processor Optimization

5. Optimization

Add new register named NUMA, for address of number to add.

❑ Update code to reflect our change (note still 2 cycles per iteration):

 If (START==1) NEXTß0, SUMß0, NUMAß1;
 repeat {
 SUMßSUM + Memory[NUMA];
 NUMAßMemory[NEXT] + 1, NEXTßMemory[NEXT] ;
 } until (NEXT==0);
 RßSUM, DONEß1;

21

5. Optimization
❑ Architecture #2:

❑ Incremental cost: addition of another register and mux.

If (START==1) NEXTß0, SUMß0, NUMAß1;
 repeat {
 SUMßSUM + Memory[NUMA];
 NUMAßMemory[NEXT] + 1, NEXTßMemory[NEXT] ;
 } until (NEXT==0);
RßSUM, DONEß1;

22

5. Optimization, Architecture #2
❑ New timing:
Clock Period (T) = max (clock period for

each state)

T > 23ns, F < 43Mhz

❑ Is this worth the extra cost?
❑ Can we lower the cost?

Notice that the circuit now only performs
one add on every cycle. Why not share
the adder for both cycles?

23

5. Optimization, Architecture #3

❑ Incremental cost:
▪ Addition of another mux and control (ADD_SEL). Removal of an 8-bit adder.

❑ Performance:
▪ No change.

❑ Change is definitely worth it.

24

EE141

Resource Utilization Charts

EE141

Resource Utilization Charts

❑ One way to visualize these (and other possible) optimizations is
through the use of a resource utilization charts.

❑ These are used in high-level design to help schedule operations on
shared resources.

❑ Resources are listed on the y-axis. Time (in cycles) on the x-axis.
❑ Example:
memory fetch A1 fetch A2
bus fetch A1 fetch A2
register-file read B1 read B2
ALU A1+B1 A2+B2
 cycle 1 2 3 4 5 6 7

❑ Our list processor has two shared resources: memory and adder

26

EE141

List Example Resource Scheduling

❑ Unoptimized solution: 1. SUMßSUM + Memory[NEXT+1]; 2. NEXTßMemory[NEXT];
 memory fetch x fetch next fetch x fetch next
 adder1 next+1 next+1
 adder2 sum sum
 1 2 1 2

• How about the other combination: add x register
 memory fetch x fetch next fetch x fetch next
 adder numa sum numa sum
 1. XßMemory[NUMA], NUMAßNEXT+1;
 2. NEXTßMemory[NEXT], SUMßSUM+X;

• Does this work? If so, a very short clock period. The fetch and the add from each cycle would
be independent. T = max(Tmem, Tadd) instead of Tmem+ Tadd.

27

• Optimized solution: 1. SUMßSUM + Memory[NUMA];
 2. NEXTßMemory[NEXT], NUMAßMemory[NEXT]+1;
 memory fetch x fetch next fetch x fetch next
 adder sum numa sum numa

EE141

List Example Resource Scheduling - Ad hoc method

❑ Schedule one loop iteration followed by the next (4 cycles per result):

❑ How can we overlap iterations? next2 depends on next1.

– “slide” second iteration into first (3 cycles per result):

– or further:

 The repeating pattern is 4 cycles. Not exactly the pattern what we were
looking for. But does it work correctly?

Memory next1 x1 next2 x2
adder numa1 sum1 numa2 sum2

Memory next1 x1 next2 x2
adder numa1 sum1 numa2 sum2

Memory next1 next2 x1 x2 next3 next4 x3 x4
adder numa1 numa2 sum1 sum2 numa3 numa4 sum3 sum4

28

Initiation
Interval (II) = 4

Initiation
Interval (II) = 3

EE141

List Example Resource Scheduling - another attempt

❑ In this case, first spread out, then pack.

 1. XßMemory[NUMA], NUMAßNEXT+1;
 2. NEXTßMemory[NEXT], SUMßSUM+X;

❑ Three different loop iterations active at once.
❑ Short cycle time (no dependencies within a cycle)
❑ full utilization (only 2 cycles per result)
❑ Initialization: x=0, numa=1, sum=0, next=memory[0]
❑ Control states (out of the loop)

– two to start: initialize next, clear sum, set numa, clear x; get next2 two to
finish:

Memory next1 x1
adder numa1 sum1

Memory next1 next2 x1 next3 x2 next4 x3
adder numa1 numa2 sum1 numa3 sum2 numa4 sum3

29

Initiation
Interval (II) =2

EE141

5. Optimization, Architecture #4

❑ Datapath:

❑ Incremental cost:
– Addition of another register & mux, adder mux, and control.

❑ Performance: find max time of the four actions
 1. XßMemory[NUMA], 0.5+1+10+1+0.5 = 13ns
 NUMAßNEXT+1; same for all ⇒ T>13ns, F<77MHz
 2. NEXTßMemory[NEXT],
 SUMßSUM+X;

LD_NUMA

30

Other Optimizations

❑ Node alignment restriction:
▪ If the application of the list processor allows us to restrict the placement of nodes in

memory so that they are aligned on even multiples of 2 bytes.
– NUMA addition can be eliminated.
– Controller supplies “0” for low-bit of memory address for NEXT, and “1” for X.

▪ Furthermore, if we could use a memory with a 16-bit wide output, then could fetch entire
node in one cycle:

{NEXT, X} ß Memory[NEXT], SUM ß SUM + X;

⇒ execution time cut in half (half as many cycles)

31

List Processor Conclusions

❑ Through careful optimization:
▪ clock frequency increased from 32MHz to 77MHz
▪ little cost increase.

❑ “Scheduling” was used to overlap and to maximize use of resources.
❑ Essentially through pipelining the operations (the extra added registers -

NUMA, X - act as pipeline registers.
❑ Questions:

▪ Consider the design process we went through:
– Could a computer program go from RTL description to circuits automatically?
– Could a computer program derive the optimizations that we did?
– It is the goal of “High-Level Synthesis” to do similar transformations and automatic

mappings. “C-to-gates” compilers are an example.

32

