ircuits

Digital Design and Integrated C

< o
- c o
Te) 2 [Q\
N g T~
- N =3 O
Yo k=) O e
~ rs])
o o = =
O £ S c O
E.n Sh e
w & £ 5 —

Announcements

d Homework assignment 9 posted - due
next Friday

Q Register Transfer Notation
Q List Processor Example

Q Design Optimization

Q Resource Utilization Charts

. s ——.
-~ T e e et e
S W e e

—t e
e !

on

e

0 Register Transfer Notat

‘gl'z‘.ﬁhulﬁu.n.. E\M.Il)
TSI N e
e e o T AT
: - =

IIIII

.

Register Transfer “Level” Review % U/ - input

4 a.'tp.]t
Q At the high-level we view these systems as a collection of state elements
and CL blocks.

Q “RTL” is a commonly used acronym for “Register Transfer Level”
description.

Q It follows from the fact that all synchronous digital system can be
described as a set of state elements connected by combinational logic
blocks.

Q Though not strictly correct, some also use “RTL" to mean the Verilog or
VHDL code that describes such systems.

5

Register Transfer “notation” Descriptions

Q We introduce a notation for
describing the behavior of
systems at the register
transfer level.

Q Can view the operation of
digital synchronous systems
as a set of data transfers
between registers with
combinational logic
operations happening during
the transfer.

RT notation comprises a set of register transfers
with optional operators as part of the transfer.
Example:

regA «— regB

regC < regA + regB

if (start==1) regA «— regC

We use “;” to separate transfers that occur on
separate cycles.
Use “” to separate transfers that occur on the
same cycle.
Example (2 cycles):
regA «— regB, regB < O;
regC <« regA;

Example of Using RT Notation

ACC < ACC + R0, R1 < RO; _
ACC < ACC + R1, R0 < R1: * |n this case: RT notation

RO «— ACC; description is used to sequence the
operations on the datapath.

« [t becomes the high-level
specification for the controller.

SO_H‘ » Design of the FSM controller follows
© directly from the RT notation
RO sequence. In this example (and
' e 0 ® E most other designs) the FSM
ﬁou?‘::E controls movement of data by
ST controlling the multiplexor control
Rt - signals.
=
1

Example of Using RT Notation

Q Sometimes RT Notation is used as a
starting point for designing both the
datapath and the control:

J example:

regA < IN;

regB < IN;

regC < regA + regB;
regB < regC;

2 From this we can deduce:

- IN must fanout to both regA and regB
- regA and regB must output to an adder

- the adder must output to regC

- regB must take its input from a mux that
selects between IN and regC

* What does the datapath look
like?

\4

—OIA\ -

IN — /@_.c
\V4

B

1

» The controller:

Control points:
1. clock enable for A register
2. clock enable for B register
3. mux control

FSM controller:
4 states (one per cycle)

List Processor Example

s, oY

o —— T
— e
o T

List Processor Example

QA RT Notation gives us a framework for making high-level
optimizations.

Q General design procedure outline:
1. Problem, Constraints, and Component Library Spec.
2. “Algorithm” Selection
3. Micro-architecture Specification
4. Analysis of Cost, Performance, Power
5. Optimizations, Variations
6. Detailed Design

10

1. Problem Specification

A Design a circuit that forms the sum of all the 2's complement integers stored in a
linked-list structure starting at memory address 0:

0 i * —t—>r ®o » B —) 0
X0 K1 A2 An-1

Q Assume: All integers and pointers are 8-bit. The link-list is stored in a memory block
with an 8-bit address port and 8-bit data port, as shown below. The pointer from the
last element in the list is 0. At least one node in list.

OO NGOG RN

clk
I/Os:
. ' — START resets to head of

START List ke list and starts addition o

Processor Memory process. 11;

D — DONE signals completion -
— R holds the final result .
L]
DONE R .

Note: We dont assume nodes are aligned on 2 Byte boundaries.

1. Other Specifications

A Design Constraints:

» Usually the design specification puts a restriction on cost, performance, power or all.
We will leave this unspecified for now and return to it later.

Q Component Library:

component delay
simple logic gates 0.5ns
n-bit register clk-to-Q=0.5ns
setup=0.5ns
n-bit 2-1 multiplexor 1ns
n-bit adder (2 log(n) + 2)ns
memory 10ns read (asynchronous read)
zero compare 0.5 log(n)

(single ported memory, register has CE but no RST)

Are these reasonable?

12
O

Review of Register with “Clock Enable”

4 Register with Clock Enable:

J:lN CE

CE— REGISTER

Lon

IN

>REGISTER

+OUT

Functional description
only. Transistor level
circuit could have lower
input delay and fewer
transistors.

Q Allows register to be either be loaded on selected clock positive edge or

to retain its previous value.

Q Assume both data and CE require setup time = 0.5ns.

Q Assume no reset input.

“Algorithm” Selection

Q In this case the memory only allows one access per cycle, so the algorithm is limited to
sequential execution. If in another case more input data is available at once, then a

more parallel solution may be possible.

Assume datapath state registers NEXT and SUM.
= NEXT holds a pointer to the node in memory.
= SUM holds the result of adding the node values to this point.

If (START==1) NEXT<0, SUM<0, DONE<O;
repeat {
SUM&<SUM + Memory[NEXT+1];
NEXT <Memory[NEXT];
} until (NEXT==0);
R<SUM, DONE<1;

This RT Notation becomes the basis for DP and controller. -
O

3. Micro-Architecture #1

Datapath

Direct implementation of RTL description:

_+ /

0
SUM_SEL4 1 o|

Lb_sum—| SUM <

0
NEXT_SEL 441_ 0 |

@

LD_NEXT —| NE

XTS

A_SEL

1

N+

NEXT_ZERO

If (START==1) NEXT<0, SUM<0;
repeat {

SUM&ESUM + Memory[NEXT+1];
NEXT&Memory[NEXT];

} until (NEXT==0);
R<SUM, DONE<1;

START =0,

D

Memory

START
LD_SUM = 1
SUM_SEL=0
LD_NEXT = 1
NEXT_SEL=0
DONE=0

NEXT_ZERO=0&

COMPUTE_SUM

A_SEL=1
LD_NEXT =0
LD_SUM = 1
SUM_SEL =1
DONE=0

GET_NEXT

A_SEL=0
LD_NEXT = 1
NEXT_SEL =1
LD_SUM =0
DONE=10

START =0

Controller

START =1

MEXT_ZERO =1

15

4. Analysis of Cost, Performance, and Power

Q Skip Power for now.

Q Cost:

» How do we measure it? # of transistors? # of gates? # of CLBs?

= Depends on implementation technology. Often we are just interested in
comparing the relative cost of two competing implementations. (Save this for
later)

Q Performance:
» 2 clock cycles per number added.
= What is the minimum clock period?

= The controller might be on the critical path. Therefore we need to know the
implementation, and controller input and output delay. We do a design and
could later optimize if it is indeed on the critical path.

16

Possible Controller Implementation

_ . : 2
Q Based on this, what is the controller input and output delay” One-hot FSM

START =1
START START LD_SUM

START =1
A4
COMP SUM_SEL
NEXT_ZERO —1 SUM A_SEL
LD_NEXT
< =) >—
GET NEXT_SEL
NEXT

START

START
LD_SUM =1
SUM_SEL=10
LD_NEXT = 1

NEXT_SEL=0

DONE=0

START =0.

NEXT_ZERO=0& GET_NEXT

A_SEL=0
LD_NEXT = 1
NEXT_SEL=1
LD_SUM =0
DONE=0

COMPUTE_SUM

A SEL=1
LD_NEXT =0
LD_SUM =1
SUM_SEL=1
DONE=0

NEXT_ZERO =1

START =0 L,—\
N
DONE
.) DONE

START

4. Analysis of Performance

| COMPUTE_SUM state |

Other paths exist for each cycle in the
loop. These are the worst case
/ 4 ‘
CLK j | <—8bitadd — «— memory —> {<— 15-bitadd — | — <«—setup
— | j<ClkQ — « MUX MUX — “ If (START==1) NEXT&0, SUM&0,
repeat {
NEXT SUM& SUM + Memory[NEXT+1]
NEXT<Memory[NEXT];
1 0 .
5 8 10 ! 1R 3 until (NEXT==0)
R&SUM, DONE<1
¢ 31ns
| GET_NEXT state | D
/ Yiw—i7 NEXT sai ASEL Memory
CLK — <— control output delay —
_/ ’ SUM_SEL LD_NEXT NEXT A
—+ <« MUX MUX — —
A SEL -_ «— memory —> — <—control input delay | LD_sum
NEXT_ZERO X
51 10 1 15 1.5
¢ 155ns —M8M8M>

NEXT_ZERO

4. Analysis of Performance

d Detailed timing:
clock period (T) = max (clock period for each state)
T>31ns, F <32 MHz

Q Observation:

COMPUTE_SUM state does most of the work. Most of the components are inactive in
GET_NEXT state.

GET_NEXT does: Memory access + ...
COMPUTE_SUM does: 8-bit add, memory access, 15-bit add + ...

4 Conclusion:
Move one of the adds to GET_NEXT.

ion

t

1Za

Im

List Processor Opt

et e, oY

o —— T
— e
o T

5. Optimization
Add new register named NUMA, for address of number to add.
A Update code to reflect our change (note still 2 cycles per iteration):

If (START==1) NEXT<0, SUM<0, NUMA<1;

repeat {
SUM<SUM + Memory[NUMA];
NUMA&Memory[NEXT] + 1, NEXT€<Memory[NEXT] ;
} until (NEXT==0);

R<SUM, DONE<1;

5. Optimization

Q Architecture #2:

0
\ ‘_; / NEXT_SELﬂ 0 |

A_SEL

— LD_NEXT— NEXT <

SUM_SEL

L |
LD_SUM | s,u|\/|<€:> 1\j_:_7

1
NEXT_SEL ——%
NEXT_ZERO
If (START==1) NEXT&<0, SUM&0, NUMA<1;

repeat { LD_NEXT —| NUMAS
SUM&SUM + Memory[NUMA];
NUMA<&Memory[NEXT] + 1, NEXT<&Memory[NEXT] ;
} until (NEXT==0);
R&SUM, DONE<1;

d Incremental cost: addition of another register and mux.

Memory

5. Optimization, Architecture #2

CLK /
— |

COMPUTE_SUM state

[

L

< MUX
«— memory —>
— CLK-Q

NUMA

1

10

&
<

23ns

Q New timing:
Clock Period (T) = max (clock period for

GET_NEXT state

CLK —/

A_SEL

/

LS

\

5

a—

_

1

— control output delay

«— MUX

— memory ——

10

«—

21ns

<— 15bitadd — | — «—setup eaCh State)
MUX — o
T >23ns, F <43Mhz
10 Tie Q Is this worth the extra cost?
a Can we lower the cost?
— <— NUMA reg setup
MUX — “—

<— 8-bitadd —

8

—_—

Notice that the circuit now only performs
one add on every cycle. Why not share

the adder for both cycles?

5. Optimization, Architecture #3

1 0
ApD_SEL [1 0] NEXT_SELﬂ 0] A_SEL Memory
"4 0
\ + / LD_NEXT | NEXT 4 1 A
|

0 ¢—1

SUM_SEL4 10 | | 10 FNEXT_SEL
] =
tb_sum— SUM 94 PNUMA | LD_NEXT

NEXT_ZERO

Q Incremental cost:

» Addition of another mux and control (ADD_SEL). Removal of an 8-bit adder.

Q Performance:
= No change.

4 Change is definitely worth it.

Resource Utilization Charts

lrh-aﬂmdﬂdum.'u-ﬁuu.. J@J’M.....Na ?

e T -
S e 7
o~ S

Resource Utilization Charts

Q One way to visualize these (and other possible) optimizations is
through the use of a resource utilization charts.

Q These are used in high-level design to help schedule operations on
shared resources.

QO Resources are listed on the y-axis. Time (in cycles) on the x-axis.

Q Example:
memory fetch A1 fetch A2
bus fetch A1 fetch A2
register-file read B1 read B2
ALU A1+B1 A2+B2
cycle 1 2 3 4 5 6 7

Q Our list processor has two shared resources: memory and adder

List Example Resource Scheduling

2 Unoptimized solution: 1. SUM&SUM + Memory[NEXT+1]; 2. NEXT<Memory[NEXT];

memory fetch x fetch next fetch x fetch next
adder1 next+i next+1
adder2 sum sum

1 2 1 2

» Optimized solution: 1. SUM&SUM + Memory[NUMAJ;
2. NEXT&<Memory[NEXT], NUMA<Memory[NEXT]+1;

memory fetch x | fetch next | fetch x fetch next
adder sum numa sum numa

* How about the other combination: add x register
memory fetch x - fetch next_| fetch x fetch next
adder numa |sum “numa sum

1. X&Memory[NUMA], NUMA<NEXT+1;

2. NEXT<Memory[NEXT], SUM&SUM+X;

* Does this work? If so, a very short clock period. The fetch and the add from each cycle would
be independent. T =max(T__, T,)insteadof T _ +T_ .

27

List Example Resource Scheduling - Ad hoc method

Q Schedule one loop iteration followed by the next (4 cycles per result):
Memory | next, X, next, X, Initiation
adder numa, sum, numa, sum, Interval ([[) =4

o How can we overlap iterations? next, depends on next,.

- “slide” second iteration into first (3 cycles per result):

Memory | next, X, next, X, Initiation

adder numa, sum, | numa, sum, Interval ([/) =3
- or further:

Memory | next, | next, | x, X, next, | next, X5 X,

adder numa, |numa, | sum, sum, | numa, | huma,| sum, |sum,

The repeating pattern is 4 cycles. Not exactly the pattern what we were
looking for. But does it work correctly?

28

List Example Resource Scheduling - another attempt

Q In this case, first spread out, then pack.

Memory | next, X,
adder numa, sum,
Memory | next, next, | X, next, X, next, X
adder numa, numa, | sum, |numa,| sum, |numa, sum,
1. X&Memory[NUMA], NUMA<NEXT+1; Initiation
2. NEXT<Memory[NEXT], SUM<SUM+X; Interval (”) =9
Q Three different loop iterations active at once.
Q Short cycle time (no dependencies within a cycle)
Q full utilization (only 2 cycles per result)
Q Initialization: x=0, numa=1, sum=0, next=memory[0]
Q Control states (out of the loop)
- two to start: initialize next, clear sum, set numa, clear x; get nextz two to
finish:
29

5. Optimization, Architecture #4

0 D
X8 0 ASE
2 Datapath: k . : Memory
Am_sa.14‘1 0| X DX A
]

LD SUM-| SUM | Lo-vuma{ NUMA

Q Incremental cost:
- Addition of another register & mux, adder mux, and control.

Q Performance: find max time of the four actions

1. X€Memory[NUMA], 0.5+1+10+1+0.5 = 13ns
NUMA&ENEXT+1; same for all =|T>13ns, F<77MHz
2. NEXT <Memory[NEXT],
SUM&SUM+X;

30

Other Optimizations

A Node alignment restriction:

» If the application of the list processor allows us to restrict the placement of nodes in
memory so that they are aligned on even multiples of 2 bytes.

— NUMA addition can be eliminated.
— Controller supplies “0” for low-bit of memory address for NEXT, and “1” for X.
» Furthermore, if we could use a memory with a 16-bit wide output, then could fetch entire

node in one cycle:

{NEXT, X} € Memory[NEXT], SUM € SUM + X;

=> execution time cut in half (half as many cycles)

31

List Processor Conclusions

4 Through careful optimization:

» clock frequency increased from 32MHz to 77MHz
= |ittle cost increase.

Q “Scheduling” was used to overlap and to maximize use of resources.

Q Essentially through pipelining the operations (the extra added registers -
NUMA, X - act as pipeline registers.

Q Questions:
= Consider the design process we went through:
- Could a computer program go from RTL description to circuits automatically?
- Could a computer program derive the optimizations that we did?

- ltis the goal of “High-Level Synthesis” to do similar transformations and automatic
mappings. “C-to-gates” compilers are an example.

W

