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Announcements

❑ Homework assignment 9 posted - due 
next Friday
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Register Transfer “Level” Review

❑ At the high-level we view these systems as a collection of state elements 
and CL blocks. 

❑ “RTL” is a commonly used acronym for “Register Transfer Level” 
description. 

❑ It follows from the fact that all synchronous digital system can be 
described as a set of state elements connected by combinational logic 
blocks. 

❑ Though not strictly correct, some also use “RTL” to mean the Verilog or 
VHDL code that describes such systems.
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Register Transfer “notation” Descriptions
❑ We introduce a notation for 

describing the behavior of 
systems at the register 
transfer level. 

❑ Can view the operation of 
digital synchronous systems 
as a set of data transfers 
between registers with 
combinational logic 
operations happening during 
the transfer.

RT notation comprises a set of register transfers 
with optional operators as part of the transfer. 
Example: 
  regA ← regB 
  regC ← regA + regB 
  if (start==1) regA ← regC 

We use “;” to separate transfers that occur on 
separate cycles. 
Use “,” to separate transfers that occur on the 
same cycle. 
Example (2 cycles): 
  regA ← regB, regB ← 0; 
  regC ← regA;
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Example of Using RT Notation
ACC ← ACC + R0, R1 ← R0; 
ACC ← ACC + R1, R0 ← R1; 
R0 ← ACC; 
   • 
   •  
   • 
   

• In this case:  RT notation 
description is used to sequence the 
operations on the datapath. 

• It becomes the high-level 
specification for the controller. 

• Design of the FSM controller follows 
directly from the RT notation 
sequence.  In this example (and 
most other designs) the FSM 
controls movement of data by 
controlling the multiplexor control 
signals.
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Example of Using RT Notation
❑ Sometimes RT Notation is used as a 

starting point for designing both the 
datapath and the control: 

❑ example:   
  regA ← IN; 
    regB ← IN; 
    regC ← regA + regB; 
    regB ←  regC; 
❑ From this we can deduce: 

– IN must fanout to both regA and regB 
– regA and regB must output to an adder 
– the adder must output to regC 
– regB must take its input from a mux that 

selects between IN and regC

• What does the datapath look 
like? 

• The controller:

8

A

B

IN + C

Control points: 
1. clock enable for A register 
2. clock enable for B register 
3. mux control

FSM controller: 
4 states (one per cycle)

IN

1
0
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List Processor Example

❑ RT Notation gives us a framework for making high-level 
optimizations. 

❑ General design procedure outline: 
1. Problem, Constraints, and Component Library Spec. 
2. “Algorithm” Selection 
3. Micro-architecture Specification 
4. Analysis of Cost, Performance, Power 
5. Optimizations, Variations 
6. Detailed Design
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1. Problem Specification
❑ Design a circuit that forms the sum of all the 2's complement integers stored in a 

linked-list structure starting at memory address 0: 

❑ Assume: All integers and pointers are 8-bit. The link-list is stored in a memory block 
with an 8-bit address port and 8-bit data port, as shown below. The pointer from the 
last element in the list is 0.  At least one node in list.

I/Os: 
– START resets to head of 

list and starts addition 
process. 

– DONE signals completion 
– R holds the final result

Note:  We don’t assume nodes are aligned on 2 Byte boundaries.
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1. Other Specifications

❑ Design Constraints: 
▪ Usually the design specification puts a restriction on cost, performance, power or all.  

We will leave this unspecified for now and return to it later. 
❑ Component Library: 
   component  delay 
   simple logic gates 0.5ns 
   n-bit register clk-to-Q=0.5ns 
     setup=0.5ns 
   n-bit 2-1 multiplexor 1ns 
   n-bit adder  (2 log(n) + 2)ns 
   memory  10ns read (asynchronous read) 
   zero compare 0.5 log(n) 

  (single ported memory, register has CE but no RST) 

Are these reasonable?
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Review of Register with “Clock Enable”

❑ Register with Clock Enable: 

❑ Allows register to be either be loaded on selected clock positive edge or 
to retain its previous value. 

❑ Assume both data and CE require setup time = 0.5ns. 

❑ Assume no reset input.

Functional description 
only.  Transistor level 
circuit could have  lower 
input delay and fewer 
transistors.

CE

CE
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“Algorithm” Selection 
❑ In this case the memory only allows one access per cycle, so the algorithm is limited to 

sequential execution. If in another case more input data is available at once, then a 
more parallel solution may be possible.  

Assume datapath state registers NEXT and SUM. 
▪ NEXT holds a pointer to the node in memory. 
▪ SUM holds the result of adding the node values to this point. 

  If (START==1) NEXTß0, SUMß0, DONEß0; 
  repeat  { 
    SUMßSUM + Memory[NEXT+1]; 
    NEXTßMemory[NEXT]; 
   } until (NEXT==0); 
  RßSUM, DONEß1; 

This RT Notation becomes the basis for DP and controller. 14



3. Micro-Architecture #1
Direct implementation of RTL description:

Datapath

Controller

If (START==1) NEXTß0, SUMß0; 
    repeat  { 
        SUMßSUM + Memory[NEXT+1]; 
        NEXTßMemory[NEXT]; 
 } until (NEXT==0); 
RßSUM, DONEß1; 
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4. Analysis of Cost, Performance, and Power

❑ Skip Power for now. 
❑ Cost: 

▪ How do we measure it?  # of transistors? # of gates? # of CLBs? 
▪ Depends on implementation technology.  Often we are just interested in 

comparing the relative cost of two competing implementations. (Save this for 
later) 

❑ Performance: 
▪ 2 clock cycles per number added. 
▪ What is the minimum clock period? 
▪ The controller might be on the critical path.  Therefore we need to know the 

implementation, and controller input and output delay.  We do a design and 
could later optimize if it is indeed on the critical path.
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Possible Controller Implementation
❑ Based on this, what is the controller input and output delay?
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One-hot FSM



4. Analysis of Performance Other paths exist for each cycle in the 
loop.  These are the worst case.
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If (START==1) NEXTß0, SUMß0; 
    repeat  { 
        SUMßSUM + Memory[NEXT+1]; 
        NEXTßMemory[NEXT]; 
 } until (NEXT==0); 
RßSUM, DONEß1; 



4. Analysis of Performance
❑ Detailed timing: 

clock period (T) = max (clock period for each state) 
T > 31ns, F < 32 MHz 

❑ Observation: 
COMPUTE_SUM state does most of the work.  Most of the components are inactive in 

GET_NEXT state. 
GET_NEXT does:  Memory access + … 
COMPUTE_SUM does: 8-bit add, memory access, 15-bit add + … 

❑ Conclusion: 
Move one of the adds to GET_NEXT.
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5. Optimization

Add new register named NUMA, for address of number to add. 

❑ Update code to reflect our change (note still 2 cycles per iteration): 

  If (START==1) NEXTß0, SUMß0, NUMAß1; 
  repeat { 
    SUMßSUM + Memory[NUMA]; 
    NUMAßMemory[NEXT] + 1, NEXTßMemory[NEXT] ; 
   } until (NEXT==0);  
  RßSUM, DONEß1;  
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5. Optimization
❑ Architecture #2: 

❑ Incremental cost: addition of another register and mux.  

If (START==1) NEXTß0, SUMß0, NUMAß1; 
    repeat { 
        SUMßSUM + Memory[NUMA]; 
        NUMAßMemory[NEXT] + 1, NEXTßMemory[NEXT] ; 
        } until (NEXT==0);  
RßSUM, DONEß1;  
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5. Optimization, Architecture #2
❑ New timing: 
Clock Period (T) = max (clock period for 

each state) 

T > 23ns, F < 43Mhz 

❑ Is this worth the extra cost? 
❑ Can we lower the cost? 

Notice that the circuit now only performs 
one add on every cycle.  Why not share 
the adder for both cycles?
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5. Optimization, Architecture #3

❑ Incremental cost: 
▪ Addition of another mux and control (ADD_SEL).  Removal of an 8-bit adder. 

❑ Performance: 
▪ No change.   

❑ Change is definitely worth it.
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Resource Utilization Charts

❑ One way to visualize these (and other possible) optimizations is 
through the use of a resource utilization charts. 

❑ These are used in high-level design to help schedule operations on 
shared resources. 

❑ Resources are listed on the y-axis.  Time (in cycles) on the x-axis. 
❑ Example: 
memory               fetch A1  fetch A2 
bus                fetch A1  fetch A2 
register-file  read B1  read B2 
ALU    A1+B1  A2+B2 
  cycle     1     2     3     4     5     6     7 

❑ Our list processor has two shared resources:  memory and adder
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List Example Resource Scheduling

❑ Unoptimized solution: 1. SUMßSUM + Memory[NEXT+1];  2. NEXTßMemory[NEXT]; 
  memory    fetch x         fetch next      fetch x         fetch next 
  adder1   next+1    next+1 
  adder2   sum    sum 
        1  2     1  2

• How about the other combination: add x register 
  memory  fetch x fetch next    fetch x    fetch next 
  adder  numa sum      numa      sum 
   1. XßMemory[NUMA],  NUMAßNEXT+1; 
   2. NEXTßMemory[NEXT],  SUMßSUM+X; 

• Does this work?  If so, a very short clock period.  The fetch and the add from each cycle would 
be independent.  T = max(Tmem, Tadd) instead of Tmem+ Tadd.
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• Optimized solution: 1. SUMßSUM + Memory[NUMA];   
                2. NEXTßMemory[NEXT],  NUMAßMemory[NEXT]+1; 
  memory             fetch x     fetch next    fetch x        fetch next 
  adder  sum    numa      sum      numa 
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List Example Resource Scheduling - Ad hoc method

❑ Schedule one loop iteration followed by the next (4 cycles per result): 

❑ How can we overlap iterations?  next2 depends on next1. 

– “slide” second iteration into first (3 cycles per result): 

– or further: 

 The repeating pattern is 4 cycles.  Not exactly the pattern what we were 
looking for.  But does it work correctly?

Memory   next1                             x1                         next2                            x2  
adder               numa1                           sum1                  numa2                        sum2 

Memory      next1                           x1                next2                            x2  
adder                  numa1                          sum1    numa2                          sum2 

Memory      next1      next2         x1         x2                 next3       next4          x3   x4 
adder                numa1     numa2     sum1      sum2     numa3     numa4     sum3       sum4 

28

Initiation 
Interval (II) = 4

Initiation 
Interval (II) = 3
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List Example Resource Scheduling - another attempt

❑ In this case, first spread out, then pack. 

   
                  1. XßMemory[NUMA],  NUMAßNEXT+1; 
   2. NEXTßMemory[NEXT],  SUMßSUM+X; 

❑ Three different loop iterations active at once. 
❑ Short cycle time (no dependencies within a cycle) 
❑ full utilization (only 2 cycles per result) 
❑ Initialization:  x=0, numa=1, sum=0, next=memory[0] 
❑ Control states (out of the loop) 

– two to start:  initialize next, clear sum, set numa, clear x; get next2 two to 
finish: 

Memory     next1                                                 x1  
adder                 numa1                                              sum1

Memory     next1                           next2          x1              next3       x2             next4       x3  
adder                 numa1                       numa2    sum1     numa3     sum2       numa4    sum3 
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Initiation 
Interval (II) =2
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5. Optimization, Architecture #4

❑ Datapath: 

❑ Incremental cost: 
– Addition of another register & mux, adder mux,  and control. 

❑ Performance: find max time of the four actions 
  1. XßMemory[NUMA],   0.5+1+10+1+0.5 = 13ns  
      NUMAßNEXT+1; same for all ⇒ T>13ns, F<77MHz 
  2. NEXTßMemory[NEXT],   
      SUMßSUM+X;

LD_NUMA
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Other Optimizations

❑ Node alignment restriction: 
▪ If the application of the list processor allows us to restrict the placement of nodes in 

memory so that they are aligned on even multiples of 2 bytes. 
– NUMA addition can be eliminated. 
– Controller supplies “0” for low-bit of memory address for NEXT, and “1” for X. 

▪ Furthermore, if we could use a memory with a 16-bit wide output, then could fetch entire 
node in one cycle: 

{NEXT, X} ß Memory[NEXT],  SUM ß SUM + X; 

⇒ execution time cut in half (half as many cycles)
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List Processor Conclusions

❑ Through careful optimization: 
▪ clock frequency increased from 32MHz to 77MHz  
▪ little cost increase.  

❑ “Scheduling” was used to overlap and to maximize use of resources. 
❑ Essentially through pipelining the operations (the extra added registers - 

NUMA, X - act as pipeline registers. 
❑ Questions: 

▪ Consider the design process we went through: 
– Could a computer program go from RTL description to circuits automatically? 
– Could a computer program derive the optimizations that we did? 
– It is the goal of “High-Level Synthesis” to do similar transformations and automatic 

mappings.  “C-to-gates” compilers are an example.
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