
EE141

EECS151/251A
Fall	2024	
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 21: Adders

Announcements
❑ Homework 10 posted - due next Wednesday
❑ 2 more weeks of lecture (including this week)
❑ Next week Monday - guest lecture: Sandesh

Bharadwaj, from Apple
❑ 1 more homework exercise

2

EE141

Outline
❑ “tricks with trees”
❑ Adder review, subtraction, carry-

select
❑ Carry-lookahead
❑ Bit-serial addition, summary

EE141

Tricks with Trees

Demmel - CS267 Lecture 6+

Reductions with Trees - Review

N

log2 N

If each node (operator) is k-ary instead of binary, what is the delay?

Trees for optimization

6

 + + + + + + +
x0

x1 x2 x3 x4 x5 x6 x7

T = O(N)

 + +

 +
 + +

 +

 +

T = O(log N)

((x0 + x1) + (x2 + x3)) + ((x4 + x5) + (x6 + x7))

((((((x0 + x1) + x2) + x3) + x4) + x5) + x6) + x7

❑ What property of “+” are we exploiting?
❑ Other associate operators? Boolean operations? Division? Min/Max?

Parallel Prefix, or “Scan”
❑ If “+” is an associative operator, and x0,…,xp-1

are input data then parallel prefix operation
computes:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

yj = x0 + x1 + … + xj for j=0,1,…,p-1

x0, x0 + x1, x0 + x1 + x2, …

EE141

Adder review, subtraction, carry-select

9

4-bit Adder Example
❑ Motivate the adder circuit design by hand addition:

❑ Add a0 and b0 as follows:

• Add a1 and b1 as follows:

carry to next
stage

r = a XOR b = a ⊕ b
c = a AND b = ab r = a ⊕ b ⊕ ci

co = ab + aci + bci

Carry-ripple Adder Revisited
❑ Each cell:

ri = ai ⊕ bi ⊕ cin

cout = aicin + aibi + bicin = cin(ai + bi) + aibi

❑ 4-bit adder:

❑ What about subtraction?

“Full adder cell”

10

Subtractor/Adder
A - B = A + (-B)

 How do we form -B?
 1. complement B
 2. add 1

11

Delay in Ripple Adders
❑ Ripple delay amount is a function of the data inputs:

1 0 0 0 0 10 0

0 0 0 0
t0

1 0 0 1 0 11 0

0 0 0 0
t1

1 0 1 0 1 11 0

0 0 0 1
t2

12

❑ However, we usually only consider the worst case delay on the critical path.
There is always at least one set of input data that exposes the worst case delay.

1 0 1 0 1 11 0

0 0 1 1
t3

Adders (cont.)
Ripple Adder

Ripple adder is inherently slow because, in worst case
s7 must wait for c7 which must wait for c6 …

 T α n, Cost α n

How do we make it faster, perhaps with more cost?

13

Carry Select Adder

T = Tripple_adder / 2 + TMUX

COST = 1.5 * COSTripple_adder+ (n/2 + 1) * COSTMUX

14

Carry Select Adder
❑ Extending Carry-select to multiple blocks

❑ What is the optimal # of blocks and # of bits/block?
▪ If blocks too small delay dominated by total mux delay
▪ If blocks too large delay dominated by adder ripple delay

T α sqrt(N),
Cost ≈2*ripple + muxes

15

Carry Select Adder

❑ Compare to ripple adder delay:
Ttotal = 2 sqrt(N) TFA – TFA, assuming TFA = TMUX
For ripple adder Ttotal = N TFA

“cross-over” at N=3, Carry select faster for any value of N>3.
❑ Is sqrt(N) really the optimum?

▪ From right to left increase size of each block to better match delays
▪ Ex: 64-bit adder, use block sizes [12 11 10 9 8 7 7], the exact answer depends on the

relative delay of mux and FA

16
(note: one less block than sqrt(N) solution)

EE141

Carry-lookahead and Parallel Prefix

Carry Look-ahead Adders
❑ How do we arrange carry generation to be associative?
❑ Reformulate basic adder stage:

carry “kill”

carry “propagate”

carry “generate”
ci+1 = gi + pici
si = pi ⊕ ci

a b ci ci+1 s

ki = ai’ bi’

pi = ai ⊕ bi

gi = ai bi

18

Carry Look-ahead Adders
❑ Ripple adder using p and g signals:

❑ So far, no advantage over ripple adder: T α N

p0
g0

s0 = p0 ⊕ c0
c1 = g0 + p0c0

s0
a0
b0

p1
g1

s0 = p1 ⊕ c1
c2 = g1 + p1c1

s1
a1
b1

p2
g2

s2 = p2 ⊕ c2
c3 = g2 + p2c2

s2
a2
b2

p3
g3

s3 = p3 ⊕ c3
c4 = g3 + p3c3

s3
a3
b3

c0

c4

pi = ai ⊕ bi
gi = ai bi

19

Carry Look-ahead Adders
❑ “Group” propagate and generate signals:

❑ P true if the group as a whole propagates a carry to cout

❑ G true if the group as a whole generates a carry

❑ Group P and G can be generated hierarchically.

pi

gi

pi+1

gi+1

pi+k

gi+k

P = pi pi+1 … pi+k
G = gi+k + pi+kgi+k-1 + … + (pi+1pi+2 … pi+k)gi

cin

cout

cout = G + Pcin

20

Carry Look-ahead Adders
a0
b0
a1
b1
a2
b2

a

a3
b3
a4
b4
a5
b5

b

c3 = Ga + Pac0

Pa

Ga

Pb

Gb

a6
b6
a7
b7
a8
b8

c

c6 = Gb + Pbc3

Pc

Gc

P = PaPbPc

G = Gc + PcGb + PbPcGa

c9 = G + Pc0

c0

9-bit Example of hierarchically
generated P and G signals:

21

c0
a0b0
s0

a1b1
s1

c1

a2
b2

s2

a3b3
s3

c3

c2

c0

c0

a4b4
s4

a5b5
s5

c5

a6b6
s6

a7b7

c7

c6

c0

c4

c0

c8

p,g

P,G

P,G

cin

cout

P,G
Pa,Ga

Pb,Gb

P = PaPb
G = Gb + GaPb

Cout = G + cinP

aibi
si

p,g

ci

ci+1

p = a ⊕ b
g = ab

s = p ⊕ ci

ci+1 = g + cip

8-bit Carry Look-
ahead Adder

22

Blocks without the slash, don’t
perform the carry operation

p0
g0s0

p1
g1s1

c1= g0+p0c0

p1
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c0

c4

c8

8-bit Carry Look-ahead
Adder with 2-input gates.

23

Parallel-Prefix Review
Lowest delay for a reduction is a balanced tree.

log2n

log2n

x6x7 x4x5 x2x3 x0x1

N

Log(N)
Delay

• In cases where all intermediate values are required,

• one way is to use “Parallel Prefix” :

y0 = x0

y1 = x0x1

y2 = x0x1x2

 .

 .

 .

Parallel Prefix requires that the operation be associative, but simple carry generation is not! 24

Ex: AND reduction

Can carry generation be made to be a kind of “reduction operation”?

Parallel-Prefix Carry Look-ahead Adders
❑ Ground truth specification of all carries directly (no grouping):

c0 = 0
c1 = g0 + p0c0 = g0
c2 = g1 + p1c1 = g1 + p1g0
c3 = g2 + p2c2 = g2 + p2g1 + p1p2g0
c4 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + p4p3p2g0

Binary (G, P)
associative operator

25Use binary (G,P) operator to form parallel prefix tree

ci+1 = gi + pici

Can be used to form all carries!

Assumes carry signal
moving from right to
left. Not communitive.

Parallel Prefix Adder Example

G = g1 + g0 p1
P = p1p0

g1 p1g2 p2g3 p3

G = g2 + g1 p2
P = p2p1

G = g3 + g2 p3
P = p3p2

g0 p0

G = g2 + g1 p2 + g0p2p1

 = c3
G = g3 + g2 p3 +(g1 + g0p1)p3p2

 = g3 + g2p3 + g1p3p2 + g0p3p2p1

 = c4

 c2

 c1

si = ai ⊕ bi ⊕ ci = pi ⊕ ci

26

Other Parallel Prefix Adder Architectures

Ladner-Fischer adder: minimum logic
depth, large fan-out requirement up to n/2

Kogge-Stone adder: minimum logic depth, and
full binary tree with minimum fan-out,
resulting in a fast adder but with a large area

Brent-Kung adder: minimum area, but high
logic depth

Han-Carlson adder: hybrid design
combining stages from the Brent-Kung and
Kogge-Stone adder 27

Carry look-ahead Wrap-up
❑ Adder delay Ο(logN).
❑ Cost?
❑ Can be applied with other techniques. Group P & G signals

can be generated for sub-adders, but another carry
propagation technique (for instance ripple) used within the
group.
▪ For instance on FPGA. Ripple carry up to 32 bits is fast, CLA used to

extend to large adders. CLA tree quickly generates carry-in for upper
blocks.

28

EE141

Bit-serial Addition, Adder
summary

Bit-serial Adder
❑ Addition of 2 n-bit numbers:

▪ takes n clock cycles,
▪ uses 1 FF, 1 FA cell, plus registers
▪ the bit streams may come from or go to other circuits, therefore the registers

might not be needed.

• A, B, and R held in shift-registers.
Shift right once per clock cycle.

• Reset is asserted by controller.

30

Adders on FPGAs
• Dedicated carry logic

provides fast arithmetic
carry capability for high-
speed arithmetic functions.

• On Virtex-5
• Cin to Cout (per bit)

delay = 40ps, versus
900ps for F to X delay.

• 64-bit add delay =
2.5ns.

31

Adder Final Words

❑ Dynamic energy per addition for all of these is O(n).
❑ “O” notation hides the constants. Watch out for this!
❑ The “real” cost of the carry-select is at least 2X the “real” cost of the ripple. “Real” cost of

the CLA is probably at least 2X the “real” cost of the carry-select.
❑ The actual multiplicative constants depend on the implementation details and technology.
❑ FPGA and ASIC synthesis tools will try to choose the best adder architecture automatically -

assuming you specify addition using the “+” operator, as in “assign A = B + C”

Type Cost Delay

Ripple O(N) O(N)

Carry-select O(N) O(sqrt(N))

Carry-lookahead O(N) O(log(N))

Bit-serial O(1)* O(N)

32

* not counting shift registers

