
EE141

EECS151/251A
Spring	2024	
Digital	Design	and	Integrated	Circuits

Instructor:		John	
Wawrzynek

Lecture 22:
Multiplier Circuits and
Shifters

Announcements
❑ Homework 10 posted - due next Wednesday
❑ 2 more weeks of lecture (including this week)
❑ Next week Monday - guest lecture: Sandesh

Bharadwaj, from Apple, Hardware Verification
❑ 1 more homework exercise

2

Warmup
❑ Recall long multiplication of base-10 by hand:

❑ In base-2 (binary), we do the same thing:

3

12

 56
x

 011
 101x

Multiplication a3 a2 a1 a0 Multiplicand
 X b3 b2 b1 b0 Multiplier

 a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1 Partial

 a3b2 a2b2 a1b2 a0b2 products
a3b3 a2b3 a1b3 a0b3

 . . . a1b0+a0b1 a0b0 Product

 Many different circuits exist for multiplication.
Each one has a different balance between speed (performance) and amount of logic (cost).

4

Control Algorithm:
 1. P ← 0, A ← multiplicand,
 B ← multiplier
 2. If LSB of B==1 then add A to P
 else add 0
 3. Shift [P][B] right 1
 4. Repeat steps 2 and 3 n-1 more

times.
 5. [P][B] has product.

“Shift and Add” Multiplier
❑ Sums each partial product,

one at a time.
❑ In binary, each partial product

is shifted versions of A or 0.

• Cost α n, Τ = n clock cycles.
• What is the critical path for

determining the min clock
period?

5

Signed Multiplication
“Remember” for 2’s complement numbers MSB has negative weight:

 ex: -6 = 110102 = 0•20 + 1•21 + 0•22 + 1•23 - 1•24

 = 0 + 2 + 0 + 8 - 16 = -6

❑ Therefore for multiplication:
 a) subtract final partial product (multiplier is signed)
 b) sign-extend partial products (multiplicand is signed)
❑ Modifications to shift & add circuit:
 a) adder/subtractor
 b) sign-extender on P shifter register 6

X =
n−2

∑
i=0

xi ⋅ 2i − xn−1 ⋅ 2n−1

Convince yourself
❑ What’s -3 x 5?

7

1101
0101x

Outline for Multipliers
❑ Combinational multiplier
❑ Latency & Throughput

▪ Wallace Tree
▪ Pipelining to increase throughput

❑ Smaller multipliers
▪ Booth encoding
▪ Serial, bit-serial

❑ Two’s complement multiplier
8

EE141

Unsigned
Combinational Multiplier

Array Multiplier

Each row: n-bit adder with AND gates

What is the critical path?

Single cycle multiply: Generates all n partial products simultaneously.

10

Carry-Save Addition
❑ Speeding up multiplication is a

matter of speeding up the summing
of the partial products.

❑ “Carry-save” addition can help.
❑ Carry-save addition passes

(saves) the carries to the output,
rather than propagating them.

❑ Carry-save addition takes in 3
numbers and produces 2.

❑ (Sometimes called a “3:2 compressor”)

• Example: sum four numbers,
 110 = 0001, 310 = 0011, 210 = 0010, 310 = 0011

 110 0001
 310 0011
 + 210 0010
 c 0110 = 610
 s 0000 = 010

 310 0011
 c 0100 = 210
 s 0101 = 610
 1001 = 810

carry-save
add

carry-save add

carry-propagate add

11

With this technique, we can avoid carry propagation until final addition!

Carry-save Circuits
❑When adding sets of numbers, carry-save can be used on

all but the final sum.
❑Standard adder (carry propagate) is used for final sum.
❑Carry-save is fast (no carry propagation) and cheap (same

cost as ripple adder)

12

Array Multiplier using Carry-save Addition

Any fast carry-
propagate adder

13

Carry-save Addition
CSA is associative and commutative. For example:

 (((X0 + X1) + X2) + X3) = ((X0 + X1) +(X2 + X3))

• A balanced tree can be used to reduce
the logic delay.

• It doesn’t matter where you add the
carries and sums, as long as you
eventually do add them.

• This structure is the basis of the
Wallace Tree Multiplier.

• Partial products are summed with the
CSA tree. Fast CPA (ex: CLA) is used
for final sum.

• Multiplier delay α log3/2N + log2N

14

Increasing Throughput: Pipelining

= register

Idea: split processing
across several clock cycles
by dividing circuit into
pipeline stages separated by
registers that hold values
passing from one stage to
the next.

15

EE141

Smaller Combinational
Multipliers

Bit-serial Multiplier
❑ Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

❑ Control Algorithm:
repeat n cycles { // outer (i) loop
 repeat n cycles{ // inner (j) loop
 shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.

17

EE141

Signed Multipliers

EE141

Combinational Multiplier (signed!)

 X * Y = (-3) * (-2)

 (-3) 101 (X)
 (-2) 110 (Y)

 0 0 0 0 0 0 Y0*X = 0
 + 1 1 1 0 1 2Y1*X = -6
 - 1 1 0 1 4Y2*X = -12

 (+6) 0 0 0 1 1 0

19

EE141

Combinational Multiplier (signed)
 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

x3

FA

x2

FA

x1

FA

x2

FA

x1

FA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

FAFAFA

FA

FA

FA

FA

1
There are tricks we can use
to eliminate the extra
circuitry we added…20

2’s Complement Multiplication (Baugh-Wooley)

 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1 1

Step 1: two’s complement operands so high
order bit is –2N-1. Must sign extend partial
products and subtract the last one

Step 2: don’t want all those extra additions, so
add a carefully chosen constant, remembering to
subtract it at the end. Convert subtraction into
add of (complement + 1).

Step 3: add the ones to the partial products
and propagate the carries. All the sign
extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands takes
just approximately same amount of hardware as
multiplying unsigned operands!

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+
+ 1
- 1 1 1 1

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1
- 1 1 1 1

–B = ~B + 1

21

EE141

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3
z4

z5z6z7

y3

y2

y1

y0

22

Page

Example
• What’s -3 x -5?

23

 1101
 1011x

EE141

Multiplication in Verilog
You can use the “*” operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!

If you want Verilog to treat your operands as signed two’s complement
numbers, add the keyword signed to your wire or reg declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different circuitry if
your multiplication operands are signed vs. unsigned. Same is true of the
>>> (arithmetic right shift) operator. To get signed operations all operands
must be signed.

To make a signed constant: 10’sh37C

wire signed [9:0] a;
wire [9:0] b;
wire signed [19:0] result = a*$signed(b);

24

Outline

❑ Constant Coefficient Multiplication
❑ Shifters

25

Constant Multiplication
❑ Our multiplier circuits so far has assumed both the multiplicand (A) and

the multiplier (B) can vary at runtime.
❑ What if one of the two is a constant?
 Y = C * X
❑ “Constant Coefficient” multiplication comes up often in signal processing

and other hardware. Ex:

 yi = αyi-1+ xi

 where α is an application dependent constant that is hard-wired
into the circuit.

❑ How do we build and array style (combinational) multiplier that takes
advantage of the constancy of one of the operands?

xi yi

26

Multiplication by a Constant
❑ If the constant C in C*X is a power of 2, then the multiplication is

simply a shift of X.
❑ Ex: 4*X

❑ What about division?

❑ What about multiplication by non- powers of 2?
27

Multiplication by a Constant
❑ In general, a combination of fixed shifts and addition:

▪ Ex: 6*X = 0110 * X = (22 + 21)*X = 22 X + 21 X

▪ Details:

28

Multiplication by a Constant
❑ Another example: C = 2310 = 010111

❑ In general, the number of additions equals one less than the number of 1’s in the
constant.

❑ Using carry-save adders (for all but one addition) helps reduce the delay and cost, and
using balanced trees helps with delay.

❑ Is there a way to further reduce the number of adders (and thus the cost and delay)?

29

Multiplication using Subtraction
❑ Subtraction is approximately the same cost and delay as addition.
❑ Consider C*X where C is the constant value 1510 = 01111.
 C*X requires 3 additions.
❑ We can “recode” 15
 from 01111 = (23 + 22 + 21 + 20)
 to 10001 = (24 - 20)
 where 1 means negative weight.
❑ Therefore, 15*X can be implemented with only one subtractor.

30

 <<4

Canonic Signed Digit Representation
❑ CSD represents numbers using 1, 1, & 0 with the least possible number

of non-zero digits.
▪ Strings of 2 or more non-zero digits are replaced.
▪ Leads to a unique representation.

❑ To form CSD representation might take 2 passes:
▪ First pass: replace all occurrences of 2 or more 1’s:
 01..10 by 10..10
▪ Second pass: same as above, plus replace 0110 by 0010 and 0110 by 0010

❑ Examples:

❑ Can we further simplify the multiplier circuits?

0010111 = 23
0011001
0101001 = 32 - 8 - 1011101 = 29

100101 = 32 - 4 + 1

0110110 = 54
1011010
1001010 = 64 - 8 - 2

31

“Constant Coefficient Multiplication” (KCM)
Binary multiplier: Y = 231*X = (27 + 26 + 25 + 22 + 21+20)*X

❑ CSD helps, but the multipliers are limited to shifts followed by adds.
▪ CSD multiplier: Y = 231*X = (28 - 25 + 23 - 20)*X

❑ How about shift/add/shift/add …?
▪ KCM multiplier: Y = 231*X = 7*33*X = (23 - 20)*(25 + 20)*X

❑ No simple algorithm exists to determine the optimal KCM representation.
❑ Most use exhaustive search method.

32

EE141

Shifters

Fixed Shifters / Rotators Defined

Logical
Shift

Rotate

Arithmetic
Shift

34

Variable Shifters / Rotators
• Example: X >> S, where S is unknown when we synthesize the circuit.
• Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point

arithmetic, division/multiplication by powers of 2, etc.
• One way to build this is a simple shift-register:

a) Load word, b) shift enable for S cycles, c) read word.

– Worst case delay O(N) , not good for processor design.
– Can we do it in O(logN) time and fit it in one cycle?

35

Log Shifter / Rotator
❑ Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

LUT Mapping of Log shifter

Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs. Naturally makes 4to1 muxes:

Reorganize shifter to use 4to1 muxes.

Final stage
uses F7 mux

“Improved” Shifter / Rotator
❑ How about this approach? Could it lead to even less delay?

❑ What is the delay of these big muxes?
❑ Look a transistor-level implementation?

38

x1
x2
x3
x4
x5
x6
x7
x0

Left-shift with rotate

Barrel Shifter
❑ Cost/delay?

39

Connection Matrix
❑ Generally useful

structure:
▪ N2 control points.
▪ What other interesting

functions can it do?

Cross-bar Switch
❑ Nlog(N) control signals.
❑ Supports all interesting

permutations
▪ All one-to-one and one-to-

many connections.
❑ Commonly used in

communication hardware
(switches, routers).

41

