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Announcements
❑ Homework 10 posted - due next Wednesday 
❑ 2 more weeks of lecture (including this week) 
❑ Next week Monday - guest lecture: Sandesh 

Bharadwaj, from Apple, Hardware Verification 
❑ 1 more homework exercise
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Warmup
❑ Recall long multiplication of base-10 by hand: 

❑ In base-2 (binary), we do the same thing:
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Multiplication   a3 a2 a1 a0 Multiplicand 
  X b3 b2 b1 b0 Multiplier 

   a3b0 a2b0 a1b0 a0b0 

      a3b1 a2b1 a1b1 a0b1    Partial 

  a3b2 a2b2 a1b2 a0b2     products 
a3b3 a2b3 a1b3 a0b3  

   . . .              a1b0+a0b1  a0b0   Product 

 Many different circuits exist for multiplication. 
Each one has a different balance between speed (performance) and amount of logic (cost).
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Control Algorithm: 
 1. P ← 0, A ← multiplicand,  
 B ← multiplier 
 2. If LSB of B==1 then add A to P 
       else add 0 
 3. Shift [P][B] right 1 
 4. Repeat steps 2 and 3 n-1 more 

times. 
 5. [P][B] has product.

“Shift and Add” Multiplier
❑  Sums each partial product, 

one at a time. 
❑  In binary, each partial product 

is shifted versions of A or 0.

• Cost α n, Τ = n clock cycles. 
• What is the critical path for 

determining the min clock 
period?
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Signed Multiplication
“Remember” for 2’s complement numbers MSB has negative weight: 

 ex: -6 = 110102 = 0•20 + 1•21 + 0•22 + 1•23 - 1•24 

        =   0    +   2   +   0   +   8    -  16  =  -6 

❑ Therefore for multiplication: 
  a) subtract final partial product (multiplier is signed) 
  b) sign-extend partial products (multiplicand is signed) 
❑ Modifications to shift & add circuit: 
  a) adder/subtractor 
  b) sign-extender on P shifter register 6

X =
n−2

∑
i=0

xi ⋅ 2i − xn−1 ⋅ 2n−1



Convince yourself
❑ What’s -3 x 5?
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Outline for Multipliers
❑ Combinational multiplier 
❑ Latency & Throughput 

▪ Wallace Tree 
▪ Pipelining to increase throughput 

❑ Smaller multipliers 
▪ Booth encoding 
▪ Serial, bit-serial 

❑ Two’s complement multiplier
8
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Array Multiplier

Each row:  n-bit adder with AND gates

What is the critical path?

Single cycle multiply:  Generates all n partial products simultaneously.
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Carry-Save Addition
❑ Speeding up multiplication is a 

matter of speeding up the summing 
of the partial products. 

❑ “Carry-save” addition can help. 
❑ Carry-save addition passes 

(saves) the carries to the output, 
rather than propagating them. 

❑ Carry-save addition takes in 3 
numbers and produces 2.  

❑ (Sometimes called a “3:2 compressor”)

• Example: sum four numbers, 
 110 = 0001, 310 = 0011, 210 = 0010, 310 = 0011 

                                   110   0001 
                                   310  0011 
                               +  210  0010 
                                      c  0110  =  610    
                                      s  0000  =  010 

                                                      310  0011 
                                       c  0100  =  210 
                                       s  0101  =  610 
                                           1001  =  810 

carry-save 
add

carry-save add

carry-propagate add
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With this technique, we can avoid carry propagation until final addition! 
 



Carry-save Circuits
❑When adding sets of numbers, carry-save can be used on 

all but the final sum. 
❑Standard adder (carry propagate) is used for final sum. 
❑Carry-save is fast (no carry propagation) and cheap (same 

cost as ripple adder)
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Array Multiplier using Carry-save Addition

Any fast carry-
propagate adder
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Carry-save Addition
CSA is associative and commutative.  For example: 

      (((X0 + X1) + X2 ) + X3 ) = ((X0 + X1) +( X2 + X3 ))

• A balanced tree can be used to reduce 
the logic delay. 

• It doesn’t matter where you add the 
carries and sums, as long as you 
eventually do add them. 

• This structure is the basis of the 
Wallace Tree Multiplier. 

• Partial products are summed with the 
CSA tree.  Fast CPA (ex: CLA) is used 
for final sum. 

• Multiplier delay α log3/2N + log2N
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Increasing Throughput: Pipelining

= register

Idea: split processing 
across several clock cycles 
by dividing circuit into 
pipeline stages separated by 
registers that hold values 
passing from one stage to 
the next.
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Bit-serial Multiplier
❑ Bit-serial multiplier (n2 cycles, one bit of result per n cycles): 

❑ Control Algorithm:
repeat n cycles {  // outer (i) loop 
 repeat n cycles{   // inner (j) loop 
  shiftA, selectSum, shiftHI 
 } 
 shiftB, shiftHI, shiftLOW, reset 
}

Note: The occurrence of a control 
signal x means x=1.  The absence 
of x means x=0.
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Combinational Multiplier (signed!)

                   X * Y = (-3) * (-2) 

 (-3)                        101        (X) 
 (-2)                        110        (Y) 
                     -------------------- 
                 0 0 0 0 0 0     Y0*X =  0 
               + 1 1 1 0 1        2Y1*X = -6 
               - 1 1 0 1       4Y2*X = -12 
                   ---------------------- 
 (+6)              0 0 0 1 1 0
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Combinational Multiplier (signed)
                        X3   X2   X1   X0 
                     *  Y3   Y2   Y1   Y0 
                     -------------------- 
  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
----------------------------------------- 
    Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0
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1
There are tricks we can use 
to eliminate the extra 
circuitry we added…20



2’s Complement Multiplication (Baugh-Wooley)

                        X3   X2   X1   X0 
                     *  Y3   Y2   Y1   Y0 
                     -------------------- 
  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
----------------------------------------- 
    Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
+    1              1 

Step 1: two’s complement operands so high 
order bit is –2N-1.  Must sign extend partial 
products and subtract the last one

Step 2: don’t want all those extra additions, so 
add a carefully chosen constant, remembering to 
subtract it at the end. Convert subtraction into 
add of (complement + 1).

Step 3: add the ones to the partial products 
and propagate the carries.  All the sign 
extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands takes 
just approximately same amount of hardware as 
multiplying unsigned operands!

                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
+       
+                        1 
-         1    1    1    1

  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+                        1 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+                   1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
+              1 
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
+                        1 
+         1 
-         1    1    1    1

–B = ~B + 1
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2’s Complement Multiplication
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Example
• What’s -3 x -5?
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Multiplication in Verilog
You can use the “*” operator to multiply two numbers:

wire [9:0] a,b; 
wire [19:0] result = a*b;   // unsigned multiplication!

If you want Verilog to treat your operands as signed two’s complement 
numbers, add the keyword signed to your wire or reg declaration: 

wire signed [9:0] a,b; 
wire signed [19:0] result = a*b;  // signed multiplication!

Remember: unlike addition and subtraction, you need different circuitry if 
your multiplication operands are signed vs. unsigned.  Same is true of the 
>>> (arithmetic right shift) operator.  To get signed operations all operands 
must be signed. 

To make a signed constant: 10’sh37C

wire signed [9:0] a; 
wire [9:0] b; 
wire signed [19:0] result = a*$signed(b); 
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Outline

❑  Constant Coefficient Multiplication 
❑  Shifters 
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Constant Multiplication
❑ Our multiplier circuits so far has assumed both the multiplicand (A) and 

the multiplier (B) can vary at runtime. 
❑ What if one of the two is a constant? 
    Y = C * X 
❑ “Constant Coefficient” multiplication comes up often in signal processing 

and other hardware.  Ex: 

   yi = αyi-1+ xi  

  where  α is an application dependent constant that is hard-wired 
into the circuit. 

❑ How do we build and array style (combinational) multiplier that takes 
advantage of the constancy of one of the operands?

xi yi
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Multiplication by a Constant
❑ If the constant C in C*X is a power of 2, then the multiplication is 

simply a shift of X.   
❑ Ex: 4*X 

❑ What about division? 

❑ What about multiplication by non- powers of 2?
27



Multiplication by a Constant
❑ In general, a combination of fixed shifts and addition: 

▪ Ex: 6*X  =  0110 * X  =  (22 + 21)*X = 22 X + 21 X  

▪ Details:
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Multiplication by a Constant
❑ Another example: C = 2310 = 010111 

❑ In general, the number of additions equals one less than the number of 1’s in the 
constant. 

❑ Using carry-save adders (for all but one addition) helps reduce the delay and cost, and 
using balanced trees helps with delay. 

❑ Is there a way to further reduce the number of adders (and thus the cost and delay)?
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Multiplication using Subtraction
❑ Subtraction is approximately the same cost and delay as addition. 
❑ Consider C*X where C is the constant value 1510 = 01111. 
        C*X requires 3 additions. 
❑ We can “recode” 15  
   from  01111 =  (23 + 22 + 21 + 20 ) 
   to      10001 = (24 - 20 ) 
 where 1 means negative weight. 
❑ Therefore, 15*X can be implemented with only one subtractor.

30
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Canonic Signed Digit Representation
❑ CSD represents numbers using 1, 1, & 0 with the least possible number 

of non-zero digits.   
▪ Strings of 2 or more non-zero digits are replaced. 
▪ Leads to a unique representation. 

❑ To form CSD representation might take 2 passes: 
▪ First pass: replace all occurrences of 2 or more 1’s:  
    01..10 by 10..10 
▪ Second pass: same as above, plus replace 0110 by 0010           and 0110 by 0010  

❑ Examples: 

❑ Can we further simplify the multiplier circuits? 

0010111  =  23 
0011001 
0101001 = 32 - 8 - 1011101  =  29 

100101  =  32 - 4 + 1

0110110  =  54 
1011010 
1001010 = 64 - 8 - 2
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“Constant Coefficient Multiplication” (KCM)
Binary multiplier:  Y = 231*X = (27 + 26 + 25 + 22 + 21+20)*X 

❑ CSD helps, but the multipliers are limited to shifts followed by adds. 
▪ CSD multiplier:  Y = 231*X = (28 - 25 + 23 - 20)*X 

❑ How about shift/add/shift/add …? 
▪ KCM multiplier:  Y = 231*X = 7*33*X = (23 - 20)*(25 + 20)*X 

❑ No simple algorithm exists to determine the optimal KCM representation. 
❑ Most use exhaustive search method.
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Shifters



Fixed Shifters / Rotators Defined

Logical 
Shift

Rotate

Arithmetic 
Shift
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Variable Shifters / Rotators
• Example:  X >> S, where S is unknown when we synthesize the circuit. 
• Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point 

arithmetic, division/multiplication by powers of 2, etc.   
• One way to build this is a simple shift-register: 

a) Load word,  b) shift enable for S cycles,  c) read word. 

– Worst case delay O(N) , not good for processor design. 
– Can we do it in O(logN) time and fit it in one cycle?

35



Log Shifter / Rotator
❑ Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1



LUT Mapping of Log shifter 

Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs.  Naturally makes 4to1 muxes:

Reorganize shifter to use 4to1 muxes.

Final stage 
uses F7 mux 



“Improved” Shifter / Rotator
❑ How about this approach?  Could it lead to even less delay? 

❑ What is the delay of these big muxes? 
❑ Look a transistor-level implementation?
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Barrel Shifter
❑ Cost/delay?
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Connection Matrix
❑ Generally useful 

structure: 
▪ N2 control points.   
▪ What other interesting 

functions can it do?



Cross-bar Switch
❑ Nlog(N) control signals. 
❑ Supports all interesting 

permutations 
▪ All one-to-one and one-to-

many connections. 
❑ Commonly used in 

communication hardware 
(switches, routers).
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