

EECS151/251A Spring 2024 Digital Design and Integrated Circuits

Instructor: John Wawrzynek

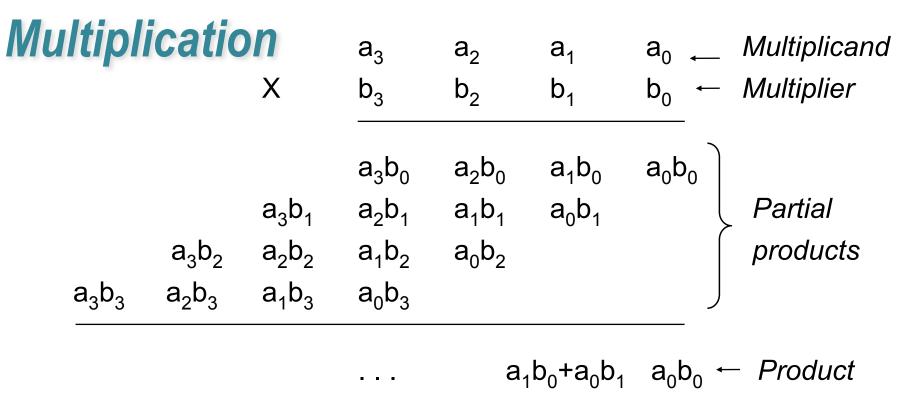
Lecture 22: Multiplier Circuits and Shifters

Announcements

- □ Homework 10 posted <u>due next Wednesday</u>
- □ 2 more weeks of lecture (including this week)
- Next week Monday guest lecture: Sandesh Bharadwaj, from Apple, Hardware Verification
- I more homework exercise

Warmup Recall long multiplication of base-10 by hand: 56 x 12

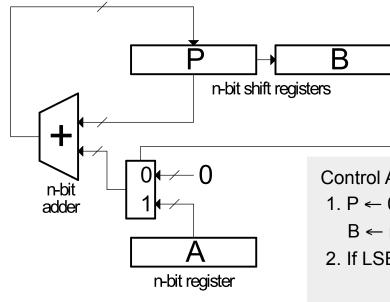
□ In base-2 (binary), we do the same thing: x $\frac{011}{101}$



Many different circuits exist for multiplication.

Each one has a different balance between speed (performance) and amount of logic (cost).

"Shift and Add" Multiplier



- Cost α n, T = n clock cycles.
- What is the critical path for determining the min clock period?

Sums each partial product, one at a time.

In binary, each partial product is shifted versions of A or 0.

Control Algorithm:

- 1. $P \leftarrow 0, A \leftarrow$ multiplicand,
 - B ← multiplier
- 2. If LSB of B==1 then add A to P

else add 0

- 3. Shift [P][B] right 1
- 4. Repeat steps 2 and 3 n-1 more times.
- 5. [P][B] has product.

Signed Multiplication

Remember for 2's complement numbers <u>MSB has negative weight</u>:

$$X = \sum_{i=0}^{n-2} x_i \cdot 2^i - x_{n-1} \cdot 2^{n-1}$$

ex:
$$-6 = 11010_2 = 0.2^0 + 1.2^1 + 0.2^2 + 1.2^3 - 1.2^4$$

= 0 + 2 + 0 + 8 - 16 = -6

□ Therefore for multiplication:

a) subtract final partial product (multiplier is signed)

b) <u>sign-extend partial products</u> (multiplicand is signed)

Modifications to shift & add circuit:

a) adder/subtractor

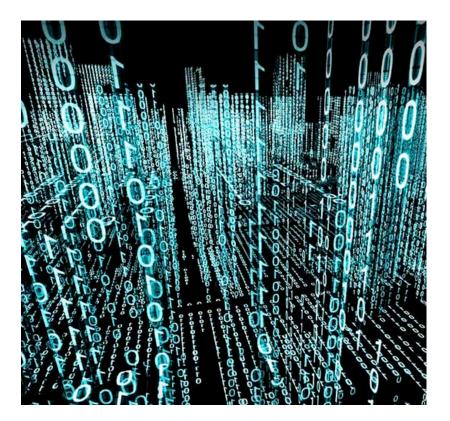
b) sign-extender on P shifter register

x 0101

Outline for Multipliers

- Combinational multiplier
- Latency & Throughput
 - Wallace Tree
 - Pipelining to increase throughput
- Smaller multipliers
 - Booth encoding
 - Serial, bit-serial

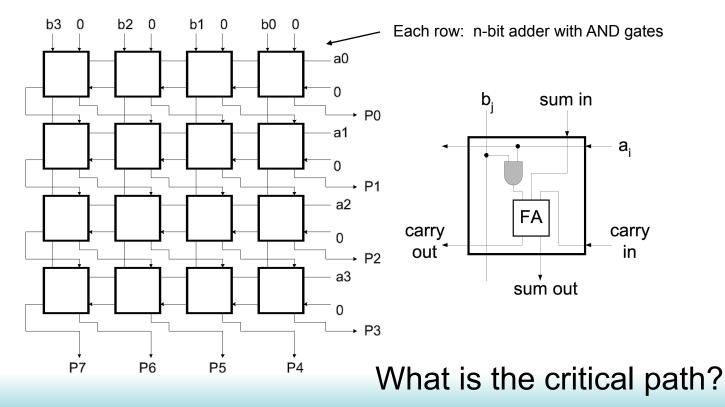
Two's complement multiplier



Unsigned Combinational Multiplier

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.



Carry-Save Addition

- Speeding up multiplication is a matter of speeding up the summing of the partial products.
- □ "Carry-save" addition can help.
- Carry-save addition passes (saves) the carries to the output, rather than propagating them.
- Carry-save addition takes in 3 numbers and produces 2.
- □ (Sometimes called a "3:2 compressor")

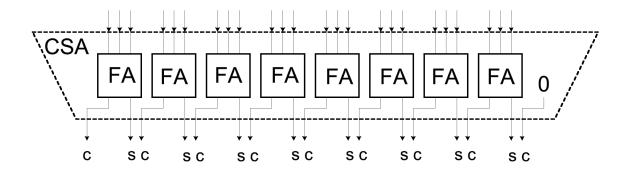
Example: sum four numbers, $1_{10} = 0001, 3_{10} = 0011, 2_{10} = 0010, 3_{10} = 0011$ 1₁₀ 0001 3₁₀ 0011 carry-save + 2₁₀ 0010 add $c 0110 = 6_{10}$ s 0000 = 0₁₀ carry-save add 3₁₀ 0011 $c 0100 = 2_{10}$ $s 0101 = 6_{10}$ carry-propagate add $1001 = 8_{10}$

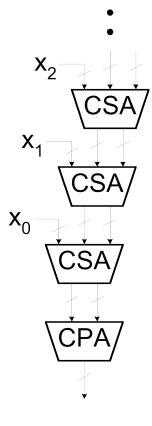
With this technique, we can avoid carry propagation until final addition!

Carry-save Circuits

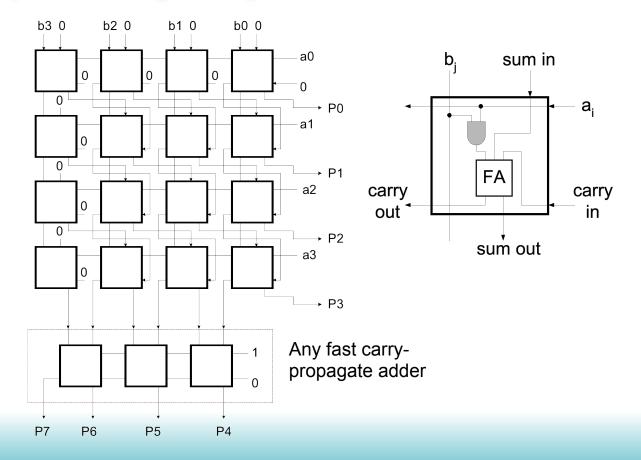
When adding sets of numbers, carry-save can be used on all but the final sum.

- □ Standard adder (carry propagate) is used for final sum.
- Carry-save is fast (no carry propagation) and cheap (same cost as ripple adder)





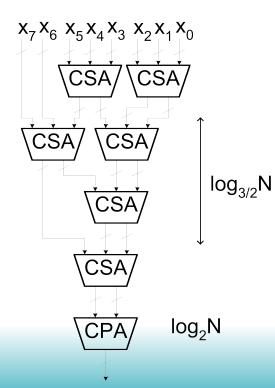
Array Multiplier using Carry-save Addition



Carry-save Addition

CSA is associative and commutative. For example:

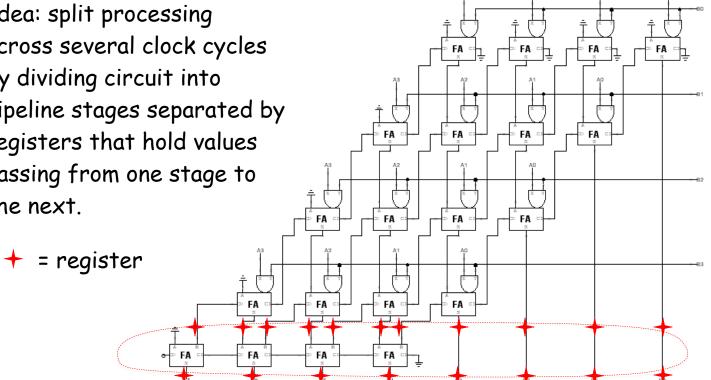
 $(((X_0 + X_1) + X_2) + X_3) = ((X_0 + X_1) + (X_2 + X_3))$



- A balanced tree can be used to reduce the logic delay.
- It doesn't matter where you add the carries and sums, as long as you eventually do add them.
- This structure is the basis of the *Wallace Tree Multiplier*.
 - Partial products are summed with the CSA tree. Fast CPA (ex: CLA) is used for final sum.
- Multiplier delay $\alpha \log_{3/2} N + \log_2 N$

Increasing Throughput: Pipelining

Idea: split processing across several clock cycles by dividing circuit into pipeline stages separated by registers that hold values passing from one stage to the next.

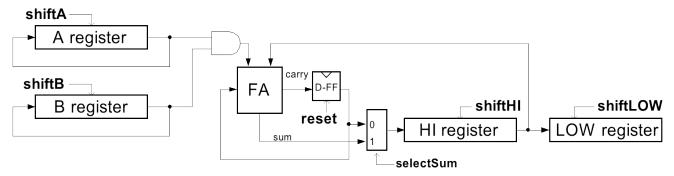




Smaller Combinational Multipliers

Bit-serial Multiplier

□ Bit-serial multiplier (n² cycles, one bit of result per n cycles):

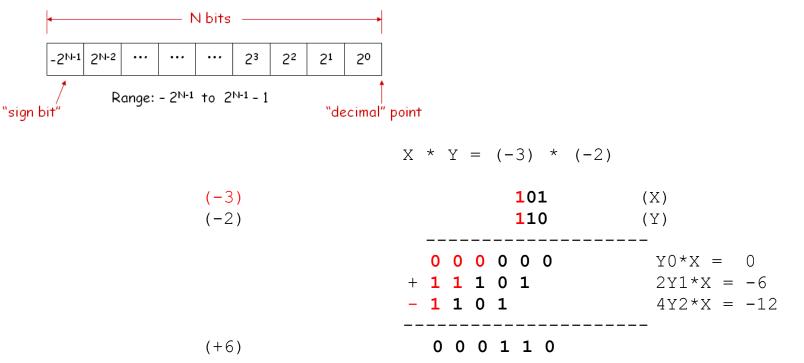


Control Algorithm:

```
repeat n cycles { // outer (i) loop
repeat n cycles { // inner (j) loop
shiftA, selectSum, shiftHI
}
shiftB, shiftHI, shiftLOW, reset
}
Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.
```

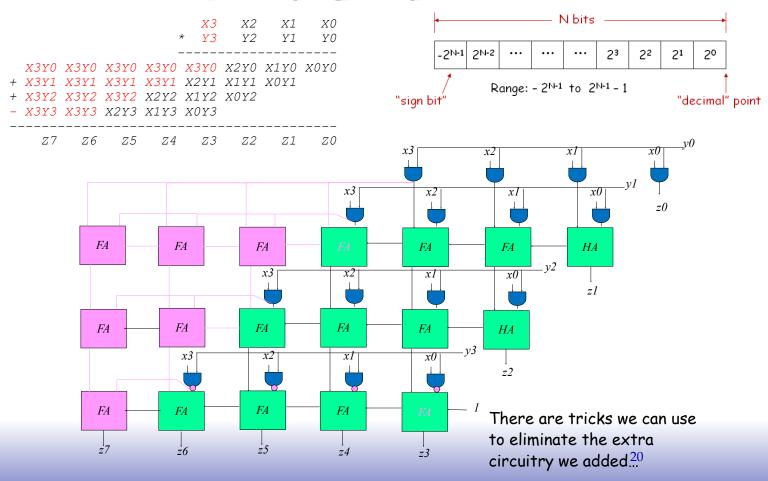

Signed Multipliers

Combinational Multiplier (signed!)



19

Combinational Multiplier (signed)



2's Complement Multiplication

Step 1: two's complement operands so high order bit is -2^{N-1} . Must sign extend partial products and subtract the last one

			;	X3 * Y3		X1 Y1	X0 Y0
+ X3Y1		X3Y1	X3Y1	X2Y1	X1Y1		X0Y0
+ X3Y2 - X3Y3					X0Y2		
Z 7	Z6	z 5	Z4	z 3	Z2	Z1	zo

Step 2: don't want all those extra additions, so add a carefully chosen constant, remembering to subtract it at the end. Convert subtraction into add of (complement + 1).

	X3Y0	X3Y0	X3Y0	X3Y0	X3Y0	X2Y0	X1Y0	X0Y0
+					1			
+	X3Y1	X3Y1	X3Y1	X3Y1	X2Y1	X1Y1	X0Y1	
+				1				
+	X3Y2	X3Y2	X3Y2	X2Y2	X1Y2	X0Y2		
+			1					
+	X3Y3	X3Y3	X2Y3	X1Y3	X0X3	٦		
+					1	- {	·B = ~	B + 1
+		1				J		
-		1	1	1	1			

(Baugh-Wooley)

Step 3: add the ones to the partial products and propagate the carries. All the sign extension bits go away!

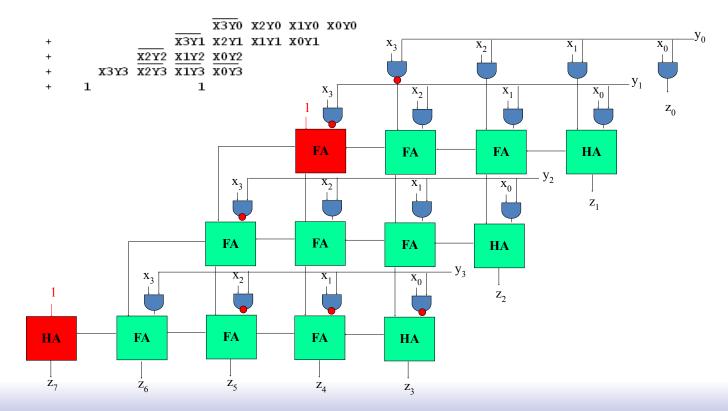
				X3Y0	X2Y0	X1Y0	X0Y0
+			X3Y1	X2Y1	X1Y1	X0Y1	
+		X2Y2	X1Y2	X0Y2			
+	X3X3	<u>x2y3</u>	<u>x1Y3</u>	<u>x0y3</u>			
+							
+				1			
-	1	1	1	1			

Step 4: finish computing the constants...

	X3Y0 X2Y0 X1Y0 X0Y0
+	X3Y1 X2Y1 X1Y1 X0Y1
+	x2Y2 X1Y2 X0Y2
+	X3Y3 X2Y3 X1Y3 X0Y3
+	1 1

Result: multiplying 2's complement operands takes just approximately same amount of hardware as multiplying unsigned operands!

2's Complement Multiplication



22

Example

• What's -3 x -5?

1101 x 1011

Multiplication in Verilog

You can use the "*" operator to multiply two numbers:

```
wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!
```

If you want Verilog to treat your operands as signed two's complement numbers, add the keyword signed to your wire or reg declaration:

```
wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!
```

Remember: unlike addition and subtraction, you need different circuitry if your multiplication operands are signed vs. unsigned. Same is true of the >>> (arithmetic right shift) operator. To get signed operations all operands must be signed.

```
wire signed [9:0] a;
wire [9:0] b;
wire signed [19:0] result = a*$signed(b);
```

To make a signed constant: 10'sh37C

Constant Coefficient Multiplication Shifters

Constant Multiplication

- Our multiplier circuits so far has assumed both the multiplicand (A) and the multiplier (B) can vary at runtime.
- □ What if one of the two is a constant?

Y = C * X

Constant Coefficient" multiplication comes up often in signal processing and other hardware. Ex:

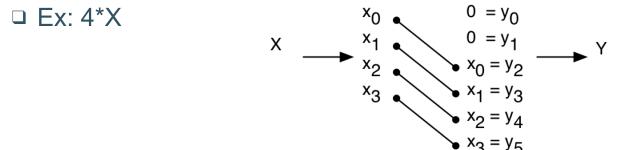
$$\mathbf{x}_{i} = \alpha \mathbf{y}_{i-1} + \mathbf{x}_{i} \qquad \mathbf{x}_{i} - \mathbf{y}_{i}$$

where α is an application dependent constant that is hard-wired into the circuit.

How do we build and array style (combinational) multiplier that takes advantage of the constancy of one of the operands?

Multiplication by a Constant

If the constant C in C*X is a power of 2, then the multiplication is simply a shift of X.



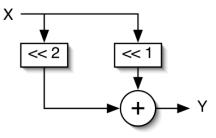
□ What about division?

□ What about multiplication by non-powers of 2?

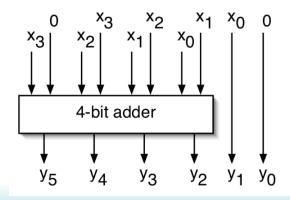
Multiplication by a Constant

□ In general, a combination of fixed shifts and addition:

• Ex: $6^*X = 0110^*X = (2^2 + 2^1)^*X = 2^2X + 2^1X$

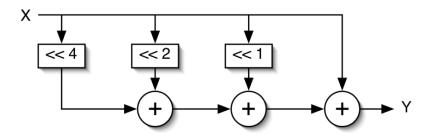


• Details:



Multiplication by a Constant

□ Another example: $C = 23_{10} = 010111$



- In general, the number of additions equals one less than the number of 1's in the constant.
- Using carry-save adders (for all but one addition) helps reduce the delay and cost, and using balanced trees helps with delay.
- □ Is there a way to further reduce the number of adders (and thus the cost and delay)?

Multiplication using Subtraction

□ Subtraction is approximately the same cost and delay as addition. □ Consider C*X where C is the constant value $15_{10} = 01111$.

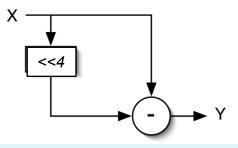
C*X requires 3 additions.

□ We can "recode" 15

from $01111 = (2^3 + 2^2 + 2^1 + 2^0)$ to $1000\overline{1} = (2^4 - 2^0)$

where 1 means negative weight.

□ Therefore, 15*X can be implemented with only one subtractor.



Canonic Signed Digit Representation

- □ CSD represents numbers using 1, $\overline{1}$, & 0 with the least possible number of non-zero digits.
 - Strings of 2 or more non-zero digits are replaced.
 - Leads to a unique representation.
- □ To form CSD representation might take 2 passes:
 - First pass: replace all occurrences of 2 or more 1's:

Second pass: same as above, plus replace 0110 by 0010

01..10 by 10..10

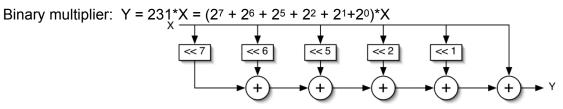
and $0\overline{1}10$ by $00\overline{1}0$

□ Examples:

011101 = 29 100101 = 32 - 4 + 1	0010111 = 23 001100 <u>1</u> 010 <u>1</u> 00 <u>1</u> = 32 - 8 - 1	0110110 = 54 10 <u>7</u> 10 <u>7</u> 0 1007070 = 64 - 8 - 2
100101 = 32 - 4 + 1		1001010 - 07 - 0 - 2

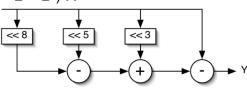
□ Can we further simplify the multiplier circuits?

"Constant Coefficient Multiplication" (KCM)



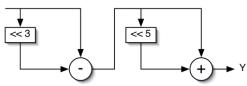
□ CSD helps, but the multipliers are limited to shifts followed by adds.

CSD multiplier: Y = 231*X = (2⁸ - 2⁵ + 2³ - 2⁰)*X

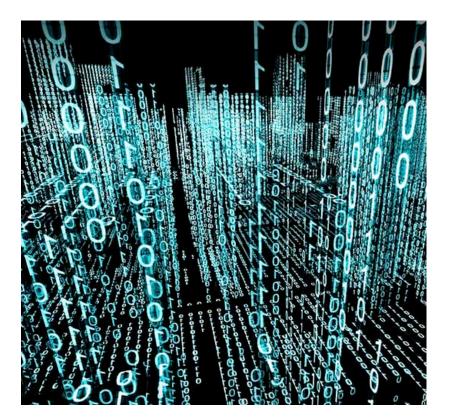


□ How about shift/add/shift/add ...?

■ KCM multiplier: Y = 231*X = 7*33*X = (2³ - 2⁰)*(2⁵ + 2⁰)*X

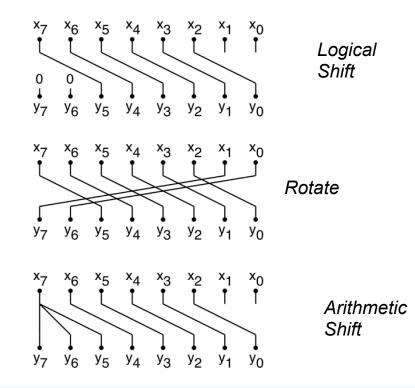


- □ No simple algorithm exists to determine the optimal KCM representation.
- Most use exhaustive search method.



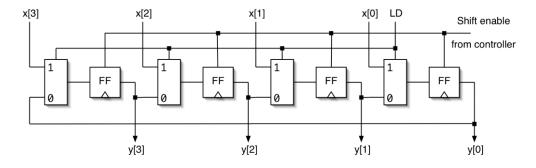
Shifters

Fixed Shifters / Rotators Defined



Variable Shifters / Rotators

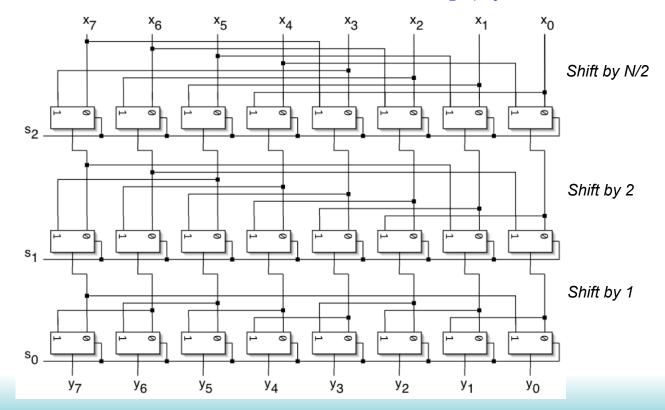
- Example: X >> S, where S is unknown when we synthesize the circuit.
- Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point arithmetic, division/multiplication by powers of 2, etc.
- One way to build this is a simple shift-register:
 - a) Load word, b) shift enable for S cycles, c) read word.



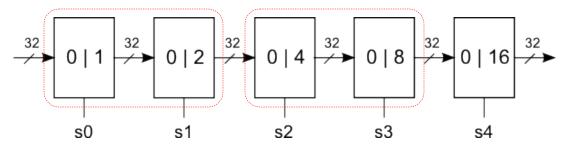
- Worst case delay O(N), not good for processor design.
- Can we do it in O(logN) time and fit it in one cycle?

Log Shifter / Rotator

□ Log(N) stages, each shifts (or not) by a power of 2 places, $S=[s_2;s_1;s_0]$:



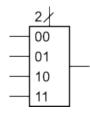
LUT Mapping of Log shifter

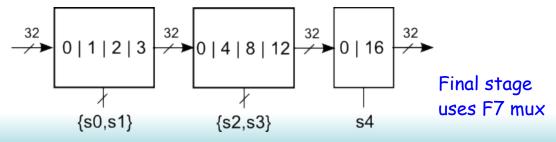


Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs. Naturally makes 4to1 muxes:

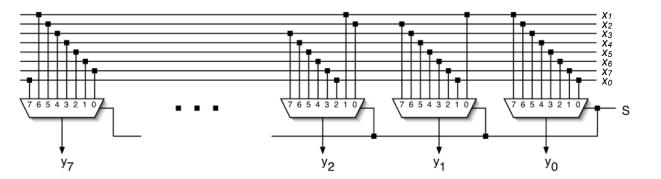
Reorganize shifter to use 4to1 muxes.





"Improved" Shifter / Rotator

□ How about this approach? Could it lead to even less delay?

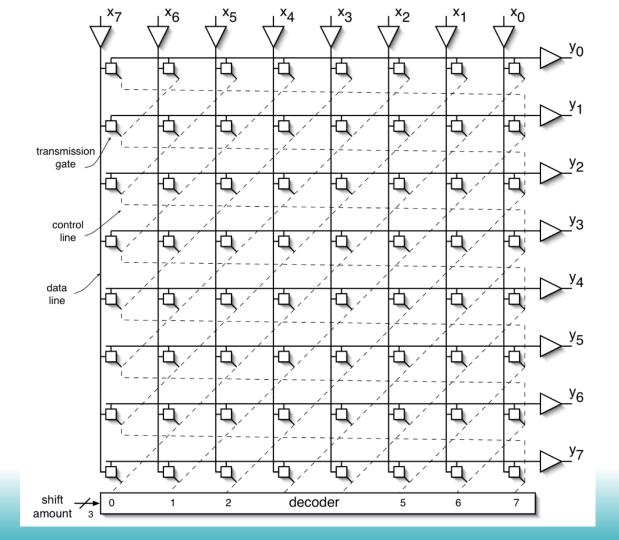


- □ What is the delay of these big muxes?
- □ Look a transistor-level implementation?

Left-shift with rotate

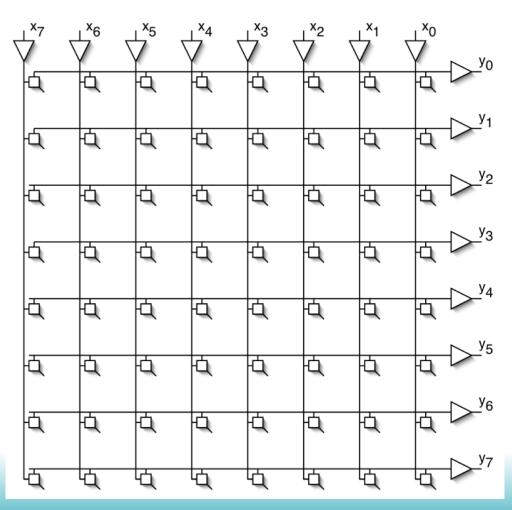
Barrel Shifter

□ Cost/delay?



Connection Matrix

- Generally useful structure:
 - N² control points.
 - What other interesting functions can it do?



Cross-bar Switch

- □ Nlog(N) control signals.
- Supports all interesting permutations
 - All one-to-one and onemany connections.
- Commonly used in communication hardware (switches, routers).

