
EE141

EECS151/251A
Spring	2024	
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 24:
Clocks, Wrapup

Announcements
❑ Homework assignment 10 due today.
❑ HW 11 - final problem set - posted, due May 3.
❑ Final project checkoffs will be Wed of next week (RRR).
❑ Final reports will be due Wed at midnight of exam week.
❑ Apple has generously offered to provide prizes for the

best projects this semester:
❑ The top ASIC project (2 students), & the top 3 FPGA projects (6 students)
❑ The student can choose either an Apple Watch (SE GPS, 40mm) or

Airpod Pro.

2

EE141

Outline

Clock non-idealities
Clock Distribution
Wrap up

EE141

Synchronous Timing - Review

Synchronous Timing

5

Register Timing Parameters

D
Clk

Q

D

Q

Clk

tclk-q

thold

T

tsetup

Output delays can be different for rising and falling data transitions 6

Timing Constraints

tclk-q.max
tclk-q.min

tlogic,max
tlogic,min

tsetup, thold

7

Cycle time (max): TClk > tclk-q,max + tlogic,max + tsetup

Race margin (min): thold < tclk-q,min + tlogic,min

Timing Constraints

tclk-q,max
tclk-q,min

tlogic,max
tlogic,min

tsetup, thold

8

EE141

Clock Nonidealities

Clock Nonidealities
❑ Clock skew: tSK

▪ Time difference between the sink (receiving) and source (launching)
clock edge; deterministic + random

❑ Clock jitter
▪ Temporal variations in consecutive edges of the clock signal;

modulation + random noise
▪ Cycle-to-cycle (short-term) tJS

▪ Long term tJL

❑ Variation of the pulse width
▪ Important for level sensitive clocking

10
These create clock “uncertainty”

Clock Uncertainties
Sources of clock uncertainty

11

Clock Skew and Jitter
❑ Both skew and jitter affect the effective cycle time and the hold

time (race margin)

Clk

Clk’

tSK

tJS

12

Positive Skew Launching edge arrives before the
receiving edge

13

Negative Skew Receiving edge arrives before the
launching edge

CLK1

CLK2

TCLK

δ

TCLK - δ

2

1

4

3

14

Timing Constraints

15

Minimum cycle time:
Tclk + δ = tclk-q,max + tsetup + tlogic,max

tclk-q,maxtclk-q,min

tlogic,max
tlogic,mintsetup, thold

Skew may be negative or positive

Timing Constraints

16

tclk-q,maxtclk-q,min

tlogic,max
tlogic,mintsetup, thold

Hold time constraint:
t(clk-q,min) + t(logic,min) > thold + δ

Skew may be negative or positive

Clock Constraints in Edge-Triggered Systems

17

If launching edge is late and receiving edge is early, the data will not be too late if:

Minimum cycle time is determined by the maximum delays through the logic

tclk-q,max + tlogic,max + tsetup < TCLK – tJS,1 – tJS,2 + δ

tclk-q,max + tlogic,max + tsetup - δ + 2tJS < TCLK

Skew can be either positive or negative

Skew and Jitter are often expressed together as “uncertainty”

Datapath with Feedback

18

EE141

Clock Distribution

Clock Distribution

20

❑ Single clock generally used to synchronize all
logic on the same chip (or region of chip)
▪ Need to distribute clock over the entire region
▪ While maintaining low skew/jitter
▪ And without burning too much power

Clock Distribution

21

❑ What’s wrong with just routing wires to every
point that needs a clock?

H-Tree

22

Equal wire length/number of buffers to get to every location

More realistic ASIC H-tree

23

[Restle98]

the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed

Figure 6

Schematic diagram of global clock generation and distribution.

PLL

Bypass

Reference
clock in

Reference
clock out

Clock distribution
Clock out

Figure 7

3D visualization of the entire global clock network. The x and y
coordinates are chip x, y, while the z axis is used to represent
delay, so the lowest point corresponds to the beginning of the
clock distribution and the final clock grid is at the top. Widths are
proportional to tuned wire width, and the three levels of buffers
appear as vertical lines.

D
el

ay

Grid

Tuned
sector
trees

Sector
buffers

Buffer level 2

Buffer level 1

y

x

Figure 8

Visualization of four of the 64 sector trees driving the clock grid,
using the same representation as Figure 7. The complex sector
trees and multiple-fingered transmission lines used for inductance
control are visible at this scale.

D
el

ay Multiple-
fingered
transmission
line

y
x

J. D. WARNOCK ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

32

Clock Tree
Delays,
IBM “Power”
CPU

D
el

ay

the total wire delay is similar to the total buffer delay. A
patented tuning algorithm [16] was required to tune the
more than 2000 tunable transmission lines in these sector
trees to achieve low skew, visualized as the flatness of the
grid in the 3D visualizations. Figure 8 visualizes four of
the 64 sector trees containing about 125 tuned wires
driving 1/16th of the clock grid. While symmetric H-trees
were desired, silicon and wiring blockages often forced
more complex tree structures, as shown. Figure 8 also
shows how the longer wires are split into multiple-fingered
transmission lines interspersed with Vdd and ground shields
(not shown) for better inductance control [17, 18]. This
strategy of tunable trees driving a single grid results in low
skew among any of the 15 200 clock pins on the chip,
regardless of proximity.

From the global clock grid, a hierarchy of short clock
routes completed the connection from the grid down to
the individual local clock buffer inputs in the macros.
These clock routing segments included wires at the macro
level from the macro clock pins to the input of the local
clock buffer, wires at the unit level from the macro clock
pins to the unit clock pins, and wires at the chip level
from the unit clock pins to the clock grid.

Design methodology and results
This clock-distribution design method allows a highly
productive combination of top-down and bottom-up design
perspectives, proceeding in parallel and meeting at the
single clock grid, which is designed very early. The trees
driving the grid are designed top-down, with the maximum
wire widths contracted for them. Once the contract for the
grid had been determined, designers were insulated from
changes to the grid, allowing necessary adjustments to the
grid to be made for minimizing clock skew even at a very
late stage in the design process. The macro, unit, and chip
clock wiring proceeded bottom-up, with point tools at
each hierarchical level (e.g., macro, unit, core, and chip)
using contracted wiring to form each segment of the total
clock wiring. At the macro level, short clock routes
connected the macro clock pins to the local clock buffers.
These wires were kept very short, and duplication of
existing higher-level clock routes was avoided by allowing
the use of multiple clock pins. At the unit level, clock
routing was handled by a special tool, which connected the
macro pins to unit-level pins, placed as needed in pre-
assigned wiring tracks. The final connection to the fixed

Figure 6

Schematic diagram of global clock generation and distribution.

PLL

Bypass

Reference
clock in

Reference
clock out

Clock distribution
Clock out

Figure 7

3D visualization of the entire global clock network. The x and y
coordinates are chip x, y, while the z axis is used to represent
delay, so the lowest point corresponds to the beginning of the
clock distribution and the final clock grid is at the top. Widths are
proportional to tuned wire width, and the three levels of buffers
appear as vertical lines.

D
el

ay

Grid

Tuned
sector
trees

Sector
buffers

Buffer level 2

Buffer level 1

y

x

Figure 8

Visualization of four of the 64 sector trees driving the clock grid,
using the same representation as Figure 7. The complex sector
trees and multiple-fingered transmission lines used for inductance
control are visible at this scale.

D
el

ay Multiple-
fingered
transmission
line

y
x

J. D. WARNOCK ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

32

Clock Tree Delays, IBM Power

clock grid was completed with a tool run at the chip level,
connecting unit-level pins to the grid. At this point, the
clock tuning and the bottom-up clock routing process still
have a great deal of flexibility to respond rapidly to even
late changes. Repeated practice routing and tuning were
performed by a small, focused global clock team as the
clock pins and buffer placements evolved to guarantee
feasibility and speed the design process.

Measurements of jitter and skew can be carried out
using the I/Os on the chip. In addition, approximately 100
top-metal probe pads were included for direct probing
of the global clock grid and buffers. Results on actual
POWER4 microprocessor chips show long-distance
skews ranging from 20 ps to 40 ps (cf. Figure 9). This is
improved from early test-chip hardware, which showed
as much as 70 ps skew from across-chip channel-length
variations [19]. Detailed waveforms at the input and
output of each global clock buffer were also measured
and compared with simulation to verify the specialized
modeling used to design the clock grid. Good agreement
was found. Thus, we have achieved a “correct-by-design”
clock-distribution methodology. It is based on our design
experience and measurements from a series of increasingly
fast, complex server microprocessors. This method results
in a high-quality global clock without having to use
feedback or adjustment circuitry to control skews.

Circuit design
The cycle-time target for the processor was set early in the
project and played a fundamental role in defining the
pipeline structure and shaping all aspects of the circuit
design as implementation proceeded. Early on, critical
timing paths through the processor were simulated in
detail in order to verify the feasibility of the design
point and to help structure the pipeline for maximum
performance. Based on this early work, the goal for the
rest of the circuit design was to match the performance set
during these early studies, with custom design techniques
for most of the dataflow macros and logic synthesis for
most of the control logic—an approach similar to that
used previously [20]. Special circuit-analysis and modeling
techniques were used throughout the design in order to
allow full exploitation of all of the benefits of the IBM
advanced SOI technology.

The sheer size of the chip, its complexity, and the
number of transistors placed some important constraints
on the design which could not be ignored in the push to
meet the aggressive cycle-time target on schedule. These
constraints led to the adoption of a primarily static-circuit
design strategy, with dynamic circuits used only sparingly
in SRAMs and other critical regions of the processor core.
Power dissipation was a significant concern, and it was a
key factor in the decision to adopt a predominantly static-
circuit design approach. In addition, the SOI technology,

including uncertainties associated with the modeling
of the floating-body effect [21–23] and its impact on
noise immunity [22, 24 –27] and overall chip decoupling
capacitance requirements [26], was another factor behind
the choice of a primarily static design style. Finally, the
size and logical complexity of the chip posed risks to
meeting the schedule; choosing a simple, robust circuit
style helped to minimize overall risk to the project
schedule with most efficient use of CAD tool and design
resources. The size and complexity of the chip also
required rigorous testability guidelines, requiring almost
all cycle boundary latches to be LSSD-compatible for
maximum dc and ac test coverage.

Another important circuit design constraint was the
limit placed on signal slew rates. A global slew rate limit
equal to one third of the cycle time was set and enforced
for all signals (local and global) across the whole chip.
The goal was to ensure a robust design, minimizing
the effects of coupled noise on chip timing and also
minimizing the effects of wiring-process variability on
overall path delay. Nets with poor slew also were found
to be more sensitive to device process variations and
modeling uncertainties, even where long wires and RC
delays were not significant factors. The general philosophy
was that chip cycle-time goals also had to include the
slew-limit targets; it was understood from the beginning
that the real hardware would function at the desired
cycle time only if the slew-limit targets were also met.

The following sections describe how these design
constraints were met without sacrificing cycle time. The
latch design is described first, including a description of
the local clocking scheme and clock controls. Then the
circuit design styles are discussed, including a description

Figure 9

Global clock waveforms showing 20 ps of measured skew.

1.5

1.0

0.5

0.0

0 500 1000 1500 2000 2500

20 ps skew

V
ol

ts
 (

V
)

Time (ps)

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. D. WARNOCK ET AL.

33

 Clocks have dedicated wires (low skew)

From: Xilinx Spartan 3 data sheet.
Virtex is similar.

End of Course Content

27

EE141
28

Why Study and Learn Digital Design?
❑ We expect that many of you will eventually be employed as

designers.
▪ Digital design is not a spectator sport. The only way to learn it, and to

appreciate the issues, is to do it.
▪ To a large extent, it comes with practice/experience (this course is just the

beginning).
▪ Another way to get better is to study other designs. Not time to do much of this

during the semester, but a good practice for later.
❑ However, a significant percentage of our graduates will not be digital

designers. What’s in it for them?
▪ Better manager of designers, marketers, field engineers, etc.
▪ Better researcher/scientist/designer in related areas

– Software engineers, fabrication process development, etc.

EE141
29

In What Context Will You be Designing?

❑ Electronic design is a critical tool for most areas of pure science:
▪ Astrophysics – special electronics used for processing radio antenna signals.
▪ Genomics – special processing architectures for DNA string matching.
▪ In general - sensor processing, control, and number crunching.
▪ Machine Learning now relies heavily on special hardware.
▪ In some fields, computation has replaced experimentation – particle physics, world

weather prediction (fluid dynamics).
❑ In computer engineering, prototypes often designed, implemented, and studied to

“prove out” an idea. Common within universities and industrial research labs.
Lessons learned and proven ideas often transferred to industry through licensing,
technical communications, or startup companies.
▪ RISC processors were first proved out at Berkeley and IBM Research

Engineers learn so that they can build.

Scientists build so that they can learn.

EE141
30

Designs in Industry
❑ Of course, companies are the primary employer of designers.

Provide some useful products to society or government and make a
profit for the shareholders.

❑ Interesting recent shift
▪ All software giants now

have hardware design
teams (embedded and
chips)

▪ Google, Amazon,
Facebook,
Microsoft, …

EE141
31

Top Ten Big Ideas from EECS151
1. Modularity and Hierarchy is an

important way to describe and think
about digital systems.

2. Parallelism is a key property of
hardware systems and distinguishes
them from serial software execution.

3. Clocking and the use of state
elements (latches, flip-flops, and
memories) control the flow of data.

4. Cost/Performance/Power tradeoffs
are possible at all levels of the
system design.

5. Boolean Algebra and other logic
representations.

6.Hardware Description Languages
(HDLs) and Logic Synthesis are a
central tool for digital design.

7.Datapath + Controller is a effective
design pattern.

8.Finite State Machines abstraction
gives us a way to model any digital
system – used for designing
controllers.

9.Arithmetic circuits are often based
on “long-hand” arithmetic techniques.

10.FPGAs + ASICs give us a convenient
and flexible implementation
technology.

EE141
32

Important Topics We Didn’t Cover
❑ Design Verification and Testing

▪ Industrial designers spend more than half their time testing and verifying correctness
of their designs.

– Some of this covered in the lab and guest lecture. Didn’t cover rigorous testing
procedures.

▪ Most industrial products are designed from the start for testability. Important for
design verification and later for manufacturing test.

▪ Related: Fault modeling and fault tolerant design.

❑ Other High-level Optimization Techniques
▪ High-level Synthesis - now starting to catch on

❑ Other High-level Architectures: GPUs, video processing, network
routers, …

❑ Asynchronous Design

EE141

Most Closely Related Courses
❑ CS152 Computer Architecture and Engineering

▪ Design and Analysis of Microprocessors
▪ Applies basic design concepts from EECS151

❑ EE251B Advanced Digital Integrated Circuits and
Systems
▪ Transistor-level design of ICs
▪ More on Advanced ASIC Tool use

❑ EE 194/290C: The Tapeout Class

33

CS 61A
Intro to

algorithms

CS 61B
Data structures

EECS 151/251A
Digital

systems

CS 70
Discrete

math

EECS 16A
Intro to EE

EECS 16B
Intro to EE

CS 61C
Computer

architecture

EE 105
Intro to

microelectronics

EE 140/240A
Analog
circuits

EE 142
RF circuits

EE 242
Advanced RF

circuits

EE 240B
Advanced analog

circuits

EECS 251B
Advanced digital

systems

Lower	division

Upper	division

Graduate

CS 152/252
Advanced computer

arch

EECS 194/290C
Tapeout Class

EECS Circuits/Computer Hardware Course Flow Map

EE 113
Power electronics

EE 143
Microfabrication

technology

required

recommended

EE 240C
Data

conversion

EE Chair Clark Nguyen

EE141
35

Future Design Issues
❑ Automatic High-level synthesis (HLS) and optimization (with micro-architecture

synthesis) and hardware/software co-design.
❑ Machine Learning and Digital Design:

▪ Can ML techniques help us design better systems or do it more quickly?
❑ Current practice is “system on a chip” (SOC) design methodology:

▪ Pre-designed subsystems (processor cores, bus controllers, memory systems, network
interfaces, etc.) connected with standard on-chip interconnect or bus.

▪ Strong emphasis on “accelerators” for energy efficiency and performance.
❑ A number of alternatives to silicon VLSI have been proposed, including

techniques based on:
▪ Carbon nanotubes1, molecular electronics, quantum mechanics, and biological processes.
▪ Quantum computing is on the horizon.2
▪ How will these change the way we design systems?

1. In 2012, IBM produced a sub-10 nm carbon nanotube transistor that outperformed silicon on speed and power. "The superior low-voltage performance of the sub-10 nm CNT
transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies", according to the abstract of the paper in Nano Letters.

2. McKinsey has estimated that 5,000 quantum computers will be operational by 2030 but that the hardware and software necessary for handling the most complex problems
won't be available until 2035 or later.

https://en.wikipedia.org/wiki/Carbon_nanotube_field-effect_transistor
https://en.wikipedia.org/wiki/Nano_Letters

EE141

Final Exam and Project Info
❑ Exam held Tue, May 7 • 11:30A - 2:30P • Physics

Building 3, Evans 60
❑ “Comprehensive” Final Exam
❑ Emphasis on second half (~2/3), but some coverage of

first half (~1/3)
❑ Same format as Exam 1. Closed-book and notes, one

page of notes.
❑ Project interviews: Thursday of RRR week, 5/1. Signup!
❑ Project final reports due Monday 5/8, midnight.

36

EE141

Exam Topics from Second Half

37

Single-Cycle	RISC-V	RV32I	Datapath

38

IME
M

ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr
DataW

DataR

1
0

0
1
21

0
p
c 0

1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

me
m

wb
al
upc+4

pc

imm[31:
0]

Reg[rs2
]

inst[31:0] ImmSelRegWEn BrUnBrEqBrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs1
]

How to Design a RISC-V Single-Cycle Processor from the ISA

EE141

Pipelined Processor

39

Processor Pipelining Hazards and Mechanisms

Sources of Power and Energy consumption in Digital ICs

Some low-power design techniques

Power-down idle transistors

Parallelism and pipelining

Slow down non-critical paths

Thermal management

Principles Behind 4 Low-power Design Techniques

Gate delay
roughly linear

with Vdd

This magic trick brought to you by Cory Hall ...

3636

Active Power ReductionActive Power Reduction

Slow Fast Slow

L
o

w
 S

u
p

p
ly

V
o

lt
a
g

e

H
ig

h
 S

u
p

p
ly

V
o

lt
a
g

e

Multiple Supply

Voltages

Logic Block
Freq = 1

Vdd = 1

Throughput = 1

Power = 1

Area = 1

Pwr Den = 1

Vdd

Logic Block

Freq = 0.5

Vdd = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated DesignsAnd so, we can transform this:

Block processes stereo audio. 1/2
of clocks for “left”, 1/2 for “right”.

P ~ F ⨯ Vdd
2

P ~ 1 ⨯ 1 2

Into this: Top block processes “left”, bottom “right”.

3636

Active Power ReductionActive Power Reduction

Slow Fast Slow

L
o

w
 S

u
p

p
ly

V
o

lt
a

g
e

H
ig

h
 S

u
p

p
ly

V
o

lt
a

g
e

Multiple Supply

Voltages

Logic Block
Freq = 1

Vdd = 1

Throughput = 1

Power = 1

Area = 1

Pwr Den = 1

Vdd

Logic Block

Freq = 0.5

Vdd = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated Designs

CV2 power only

P ~ #blks ⨯ F ⨯ Vdd
2

P ~ 2 ⨯ 1/2 ⨯ 1/4 = 1/4

How to Improve Energy Efficiency through
Parallelism and Pipelining

EE141

Memory Architecture Overview

43

❑ Word lines used to select a
row for reading or writing

❑ Bit lines carry data to/from
periphery

❑ Core aspect ratio keep
close to 1 to help balance
delay on word line versus
bit line

❑ Address bits are divided
between the two decoders

❑ Row decoder used to
select word line

❑ Column decoder used to
select one or more columns
for input/output of data

Memory Block Internal Architecture

EE141

SRAM read/write operations

44

SRAM Cell and Read/Write Operation

EE141

Periphery

❑ Decoders
❑ Sense Amplifiers
❑ Input/Output Buffers
❑ Control / Timing Circuitry

45

Memory Block Periphery Circuits

EE141

Row Decoder • Expands L-K address lines
into 2L-K word lines

46

❑ Example: decoder for
8Kx8 memory block

❑ core arranged as
256x256 cells

❑ Need 256 AND gates,
each driving one word
line

Memory Decoder Design

EE141

Write: C S is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

1-Transistor DRAM Cell

47

VBL

CS << CBL

VBIT= 0 or (VDD – VT)

❑ To get sufficient Cs, special IC process is used
❑ Cell reading is destructive, therefore read operation always is followed

by a write-back
❑ Cell looses charge (leaks away in ms - highly temperature dependent),

therefore cells occasionally need to be “refreshed” - read/write cycle

DRAM Cell and Read/Write Operation

EE141
48

Dual-ported Memory Internals
❑ Add decoder, another set of read/

write logic, bits lines, word lines:

deca decb
cell

array

r/w logic

r/w logic

data ports
address

ports

• Example cell: SRAM

• Repeat everything but cross-coupled
inverters.

• This scheme extends up to a couple more
ports, then need to add additional
transistors.

b2 b2b1 b1

WL2

WL1

Dual-port Memory Architecture

EE141

Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the depth. Example: given 1Kx8, want 2Kx8

49

Cascading Memory blocks for More Width, Depth, and Ports

EE141

FIFO Implementation Details
• Assume, dual-port memory with asynchronous read,

synchronous write.
• Binary counter for each of read and write address.

CEs (count enable) controlled by WE and RE.
• Equal comparator to see when pointers match.
• State elements for FULL and EMPTY flags:

 • Control logic (FSM) with
truth-table (draft) shown to
left.

 WE RE equal* EMPTYi FULLi

 0 0 0 0 0
 0 0 1 EMPTYi-1 FULLi-1

 0 1 0 0 0
 0 1 1 1 0
 1 0 0 0 0
 1 0 1 0 1
 1 1 0 0 0
 1 1 1 EMPTYi-1 FULLi-1

* Actually need 2 signals: “will be equal
after read” and “will be equal after write”

FIFO Implementation

Time-Multiplexing
• Time multiplex single ALU for

all adds and multiplies:
• Attempts to minimize cost at the

expense of time.
– Need to add extra register,

muxes, control.

• If we adopt above approach, we can then consider the combinational
hardware circuit diagram as an abstract computation-graph.

• This time-multiplexing “covers” the computation graph by performing the
action of each node one at a time. (Sort of emulates it.)

Using other primitives, other
coverings are possible.

51

Serialization versus Parallelization in Iterative Computations

Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages.
• After many stages are added FF overhead begins to dominate:

• Other limiters to effective pipelining:
– clock skew contributes to clock overhead
– unequal stages
– FFs dominate cost
– clock distribution power consumption
– feedback (dependencies between loop iterations)

FF “overhead”
is the setup and
clk to Q times.

Principles of Pipelining and Restrictions of Loops

Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations:

Add is associative and communitive.
Therefore we can reorder the
computation to shorten the delay of
the feedback path:

 yi = (yi-1 + xi) + a = (a + xi) + yi-1

 add1 xi+a xi+1+a xi+2+a

 add2 yi yi+1 yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the
feedback path.

53

Principles of Pipelining and Restrictions of Loops

EE141

5. Optimization, Architecture #4

❑ Datapath:

❑ Incremental cost:
– Addition of another register & mux, adder mux, and control.

❑ Performance: find max time of the four actions
 1. XßMemory[NUMA], 0.5+1+10+1+0.5 = 13ns
 NUMAßNEXT+1; same for all ⇒ T>13ns, F<77MHz
 2. NEXTßMemory[NEXT],
 SUMßSUM+X;

LD_NUMA

54

List Processor Design and Optimizations

EE141

Carry Select Adder
❑ Extending Carry-select to multiple blocks

❑ What is the optimal # of blocks and # of bits/block?
▪ If blocks too small delay dominated by total mux delay
▪ If blocks too large delay dominated by adder ripple delay

T α sqrt(N),
Cost ≈2*ripple + muxes

55

Carry Select Adder Design

EE141

Parallel Prefix Adder Example

G = g1 + g0 p1
P = p1p0

g1 p1g2 p2g3 p3

G = g2 + g1 p2
P = p2p1

G = g3 + g2 p3
P = p3p2

g0 p0

G = g2 + g1 p2 + g0p2p1

 = c3
G = g3 + g2 p3 +(g1 + g0p1)p3p2

 = g3 + g2p3 + g1p3p2 + g0p3p2p1

 = c4

 c2

 c1

si = ai ⊕ bi ⊕ ci = pi ⊕ ci
56

Carry Lookahead and Parallel Prefix Adders

EE141

Bit-serial Adder

❑ Addition of 2 n-bit numbers:
▪ takes n clock cycles,
▪ uses 1 FF, 1 FA cell, plus registers
▪ the bit streams may come from or go to other circuits, therefore the registers

might not be needed.

• A, B, and R held in shift-registers.
Shift right once per clock cycle.

• Reset is asserted by controller.

57

Bit-Serial Addition

EE141

Combinational Multiplier (unsigned)
 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in
multiplier (each bit needs just one
AND gate)

58

Array Multiplier Design

Page

Carry-Save Addition
• Speeding up multiplication is a

matter of speeding up the summing
of the partial products.

• “Carry-save” addition can help.
• Carry-save addition passes (saves)

the carries to the output, rather
than propagating them.

• Example: sum three numbers,
 310 = 0011, 210 = 0010, 310 = 0011

 310 0011
+ 210 0010
 c 0100 = 410
 s 0001 = 110

 310 0011
 c 0010 = 210

 s 0110 = 610

 1000 = 810

carry-save add

carry-save add

carry-propagate add

• In general, carry-save addition takes in 3 numbers and produces 2.
• Sometimes called a “3:2 compressor”: 3 input signals into 2 in a potentially lossy operation

• Whereas, carry-propagate takes 2 and produces 1.
• With this technique, we can avoid carry propagation until final addition

59

Carry Save Addition

EE141

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3
z4

z5z6z7

y3

y2

y1

y0

60

Signed Multiplication

EE141

Canonic Signed Digit Representation
❑ CSD represents numbers using 1, 1, & 0 with the least

possible number of non-zero digits.
▪ Strings of 2 or more non-zero digits are replaced.
▪ Leads to a unique representation.

❑ To form CSD representation might take 2 passes:
▪ First pass: replace all occurrences of 2 or more 1’s:
 01..10 by 10..10
▪ Second pass: same as above, plus replace 0110 by 0010 and

0110 by 0010
❑ Examples:

❑ Can we further simplify the multiplier circuits?

0010111 = 23
0011001
0101001 = 32 - 8 - 1011101 = 29

100101 = 32 - 4 + 1

0110110 = 54
1011010
1001010 = 64 - 8 - 2

61

CSD Multiplier Design

EE141

Log Shifter / Rotator
❑ Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

Log and Barrel Shifters Design and Analysis

EE141

Barrel Shifter
❑ Cost/delay?

▪ (don’t forget the
decoder)

63

Log and Barrel Shifters Design and Analysis

EE141

Clock Constraints in
Edge-Triggered Systems

64

If launching edge is late and receiving edge is early, the data will not be too late if:

Minimum cycle time is determined by the maximum delays through the logic

tclk-q,max + tlogic,max + tsetup < TCLK – tJS,1 – tJS,2 + δ

tclk-q,max + tlogic,max + tsetup - δ + 2tJS < TCLK

Skew can be either positive or negative
Jitter tJS usually expressed as peak-to-peak or n x RMS value

Effect of Clock Uncertainties on Maximum Clock Frequency

EE141

Clock Constraints in Edge-Triggered
Systems

65

Minimum logic delay

If launching edge is early and receiving edge is late:

tclk-q,min + tlogic,min – tJS,1 > thold + tJS,2 + δ

tclk-q,min + tlogic,min > thold + 2tJS+ δ
(This assumes jitter at launching and receiving clocks are
independent – which usually is not true)

EE141

Clock Uncertainties

Sources of clock uncertainty

66

Source of Clock Uncertainties

EE141

H-Tree

67

Equal wire length/number of buffers to get to every location

Principles of Good Clock Distribution

68

TA: Kevin Anderson
Discussion, ASIC Lab,
PS, Ed, OH: TBA

TA: Justin Kalloor
Discussion, PS,
OH: TBA

UCS2: Kevin He
Discussion, ASIC Lab,
web, OH: TBA

UCS2: Daniel Endraws
FPGA Labs, OH: TBA

UCS2: Dhruv Vaish
FPGA Lab, Discussion,
OH: TBA

UCS2: Rohit Kanagal
FPGA Lab, OH: TBA

UCS1: Allen Chen
PS grading, Discussion,
OH: TBA

UCS1: Reuben Thomas
PS grading, OH: TBA

EE141 69

The End.

❑ Special thanks to our TAs, UCS1s, UCS2s, …

❑ Good luck finishing up your project and on the final!

❑ Thanks for a great semester!

