)

=

-

O

yo —

- O

< - O

g >3

E E o

< 2 3 = ®

5 S 5 2

N < S © O

~ N X = L A=

o »n ™M ©

-~ ()] ®) =

O) %) + rb
N cTw®E S >

Ot £ 3 <C =

w o s B o O

wwaoo £ 10

oooooo

qmoh-.

g e

S oy ™
o M nﬂhwor

e “l o
o ABEEPGICETT . kb - .
i e -G Chetiee
= o v - -)
s ..” 23 .v ; Do a - @

B

-
O
e

Q.
e

O

7p)

)
A

O

-

©

=
©O

-

(O

Language Overview

Verilog Introduction

Announcements

Q Problem Set one posted. Start soon!
d Due next Monday (another out Friday)

d Contact me if you are still trying to get
enrolled.

ion

Ipt

Hardware Descr
Languages

B e, o ST
e ;‘M...mv..w”.mnmﬂﬂﬂrﬂu.muﬂ?

o e e M o

Design Entry N—

Ef;z|‘§‘|i|§|“ﬂ;?;§|°§1“§|§|"“iﬁ%?lﬁﬁid><| el
a Schematic entry/editing used to be the & | 5
standard method in industry and % h = DID_D
universities. ., |
© Schematics are intuitive. They match & |
our use of gate-level or block & L
diagrams. oy = o
© Somewhat physical. They imply a e o

physical implementation. —
o R : ial tool (edit * Hardware Description Languages
equire a special 100 (e | Or)' (HDLs]) are the new standard
® Unless hierarchy is carefully designed, |- except for PC board design, where
schematics can be confusing and schematics are still used.
difficult to follow on large designs.

5
O

Hardware Description Languages

Basic Idea: “Structural” example:

T Decod tput x0,x1,x2,x3;
- Language constructs describe circuits with ecoder (output x0,x1,x2,x

) inputs a,b)
two basic forms:
wire abar, bbar;,

» Structural descriptions: connections of inv(bbar, b);
components. Nearly one-to-one inv(abar, a);
correspondence to with schematic diagram. and(x0, abar, bbar);
.p . L. m. gram and(x1, abar, b),
» Behavioral descriptions: use high-level and (x2, a, bbar) ;
constructs (similar to conventional and(x3, a, b),
programming) to describe the circuit }
function. :
- : . . “Behavioral” example:
Originally invented for simulation. Decoder (output x0,x1,x2,x3;
- “logic synthesis” tools exist to '}”PUts a,b)
automatically convert fo gate level switch [a b]
represenfqﬂon_ case 00: [x0 x1 x2 x3] = 0x8;
. . case 01: [x0 x1 x2 x3] = 0x4;,
- High-level constructs greatly improves case 10: [x0 x1 x2 x3] = 0x2;
designer productivity. case 11: [x0 x1 x2 x3] = 0x1;
. endswitch;,
- However, this may lead you to falsely }
believe that hardware design can be
reduced to writing programs™ . -
g program Warning: this is a fake HDL!
*New tools and languages exist for this - called “high level synthesis”. 6

Sample Design Methodology

Hierarchically defines HDL
structure and/or function of
circuit.

Specification

N

Simulation Synthesis

Verification: Does the design
behave as required with regards to
function, timing, and power
consumption?

Maps specification to resources

of implementation platform [FPGA
or ASIC).

Note: This in not the entire story. Other tools are useful for analyzing
HDL specifications. More on this later.

Some Hardware Description Languages

Verilog:
»« Simple C-like syntax for structural and behavior hardware constructs

= Mature set of commercial tools for synthesis and simulation
« Usedin EECS 151/ 251A

VHDL:

» Semantically very close to Verilog
= More syntactic overhead
» Extensive type system for “synthesis time” checking

System Verilog:

» Enhances Verilog with strong typing along with other additions
» Somewhat less mature tool-flow

BlueSpec:
= Invented at MIT
» Originally built within the Haskell programming language
= Now available commercially: bluespec.com

Chisel:

» Developed at UC Berkeley
» Used in CS152, and research projects
= Available at: www.chisel-lang.org

http://bluespec.com
http://www.chisel-lang.org

S an

ST
= e -
~ - AT o M e

Verilog Introduction

Q Amodule definition describes a component in a circuit

0 Two ways to describe module contents:

» Structural Verilog

— List of sub-components and how they are connected

— Just like schematics, but using text

— You get precise control over circuit details

— May be necessary to map to special resources of the FPGA/ASIC
» Behavioral Verilog

— Describe what a component does, not how it does it

— May be simpler to write than structural description

— Synthesized into a circuit that has this behavior

— Result is only as good as the tools

Q Build up a hierarchy of modules. Top-level module is your entire design
(or the environment to test your design).

O Common approach is to use behavioral descriptions for “leaf cells” and
Structural to build hierarchy.

10
O

Verilog Modules and Instantiation

Q Modules define circuit components.
Q Instantiation defines hierarchy of the design.

name port list

module§addq_cell (a, b, cin, s, cout);,

Ke word‘;s”}»ﬁ lniUt ¢ a, b, zJ:n" . port declarations (input,
Y outpu S, cout, output, or inout)
module body
; endmodule

module adder (A, B, S); Instance of addr_cell

‘addr_cell acl (... connections ...) ;

endmodule

Note: A module is not a function in the C sense. There is no call and return
mechanism. Think of it more like a hierarchical data structure.

Note: Verilog syntax allows port declarations in port list. 11

Structural Model - XOR example

~ module name

module xor gate (out, a, b);, portlist
input a, b; port declarations
output out,
wire aBar, bBar, tl, t2; internal signal
L declarations
Built-in gates)
L not invA (aBar, a); instances
not invB (bBar, b);, 4 |_
and andl (tl, a, bBar);, v bBar

and and2 (t2, b, aBar);

or orl (out, tl, t2); }Caear
b
endmodule \ -

Interconnections (note output is first)

Instance name

= Notes:
- The instantiated gates are not “executed”. They are active always.
- Xor gate already exists as a built-in (so really no need to define it).

Structural Example: 2-to1 mux

select — select —4—{ >—
in0 —{o0 in0 T out
— out
in1 1 in1
a) 2-input mux symbol b) 2-input mux gate-level circuit diagram
/* 2-input multiplexor in gates */ S
module mux2 (in0O, inl, select, out); S
input in0,inl, select; . C++ style
output out; L) _. comments
wire s0,w0,wl;) Built-ins don’t need
_________ Instance names . o
__________ Multiple instances can
not (s0, select); ___,_,_f_’: ______ share the same
and (w0, sO, in0), -7 7 “master” name.
(wl, select, inl); e
or (out, w0, wl); Built-ins gates can
have > 2 inputs. Ex:
e and (w0, a, b, c, d);

endmodule // mux2 7

Instantiation, Signal Array, Named ports

‘* 2-input multiplexor in gates */

select[1] . -
odule mux2 (in0O, inl, select, out);,
select select[0] input in0,inl,select;
—/}’2 in0 output out;,
in0 —Ho . wire s0,w0,wl;
in1 —1 in1 not (s0, select);,
in2 {2 [o« out and (w0, s0, in0),
in3 —3 in2 — (wl, select, inl);
or (out, w0, wl),
in3 —1_| ndmodule // mux2
a) 4-input mux symbol b) 4-input mux implemented with 2-input muxes

module mux4 (inO, inl, in2, in3, select, out);

input in0O,inl,in2,in3;

input [1:0] select; .. - Signal array. Declares select[1], select[0]
output out;

wire w0,wl; Named ports. Highly recommended.

_-

mux2 PPt 3
m0 (.select(select[0]), .in0(in0), .inl(inl), .out(w0)),
ml (.select(select[0]), .in0O(in2), .inl(in3), .out(wl)),
m3 (.select(select[1l]), .inO(w0O), .inl(wl), .out(out));

endmodule // mux4

14
O

Simple Behavioral Model

module foo (out, inl, in2);
input inl, in2;

output out; P . . .
continuous assignment

Connects out to be the “and” of
in1 and in2.

assign out = inl & in2; § --------------

endmodule

The assignment continuously happens, therefore any change on the rhs is
reflected in out immediately (except for the small delay associated with the
implementation of the &).

Not like an assignment in C that takes place when the program counter
gets to that place in the program.

Example - Ripple Adder i

module FullAdder(a, b, ci, r, co);
input a, b, ci; FA
output r, co;

assign r = a * b * ci; l l
assign co = a&ci | a&b | bé&ci; cO r
endmodule
a3 b3 az bz al b1 al b0
e e Mgy e
FA FA FA FA
module Adder (A, B, R);,
Snpat [3:0] A; e T 1 LT LT LT

input [3:0] B;
output [4:0] R;

wire cl, c2, c3;

FullAdder
addo(.a(A[0]), .b(B[0]), .ci(1b0), .co(cl), .r(R[O])),
addl(.a(A[1]), .b(B[1]), .ci(cl), .co(c2), .r(R[1])),

add2(.a(A[2]), .b(B[2]), .ci(c2), .co(c3), .r(R[2])),
add3(.a(A[3]), .b(B[3]), .ci(c3), .co(R[4]), .r(R[3])),
endmodule

16

»

Verilog

Operators

greater than

Relational

>= greater than or equal to Relational
R < less than Relational
0 bit-select or part-select <= less than or equal to Relational
O parenthesis == logical equality Equality
]]] I= logical inequality Equality
! logical negation Logical
~ negation Bit-wise === case equality Equality
& reduc'r!on AND Reduct!on == case inequality Equality
| reduction OR Reduction
~& reduction NAND Reduction & bit-wise AND Bit-wise
~| reduction NOR Reduction
A reduction XOR Reduction A bit-wise XOR Bit-wise
~Nor A reduction XNOR Reduction A.or ~A bit-wise XNOR Bit-wise
+ unary (sign) plus Arithmetic | bit-wise OR Bit-wise
- unary (sign) minus Arithmetic
&& logical AND Logical
{} concatenation Concatenation
|1 logical OR Logical
{n replication Replication
2 conditional Conditional
* multiply Arithmetic
/ divide Arithmetic
% modulus Arithmetic
+ binary plus Arithmetic
- binary minus Arithmetic
<< shift left Shift
>> shift right Shift

17

Verilog Numbers

Constants:

14 ordinary decimal number

-14 2’s complement representation
12’0000 0100 0110 binary number (“_" is ignored)
12’h046 hexadecimal number with 12 bits

Signal Values:

By default, Values are unsigned
eg., C[4:0] = A[3:0] + B[3:0];

if A=0110 (6) and B = 1010 (treated as 10 not -6)
C =10000 not 00000
i.e., B is zero-padded, not sign-extended

wire signed [31:0] x;
Declares a signed (2’s complement) signal array.

18

ignment

Verilog Ass

S

— ;
SR T e

Continuous Assignment Examples

wire [3:0] A, X,Y,R,Z;
wire [7:0] P;

assign R =X | (Y & ~Z);, wire r, a, cout, cin;
. _ . exampl.e\
assign r = &X; - reduction use of bit-wise Boolean operators
operator
assign R = (a == 1b0) ? X : ¥; conditional operator
\
assign P = 8'hff; _ example constants
assign P = X * Y; ~__ arithmetic operators (use with carel)
assign P[7:0] = {4(X[3]}, X[3:0]};, (ex: sign-extension)
assign {cout, R} =X + Y + cin/ bit field concatenation
assign Y = A << 2; bit shift operator
assign Y = {A[1], A[0], 1b0, 1b0}; equivalent bit shift

20

Non-continuous Assignments

A bit strange from a hardware specification point of view. Shows
off Verilog roots as a simulation language.

“always” block example:

module and or gate (out, inl, in2, in3);
input inl, in2, in3;

output out; . .
. reg” type declaration, needed for always

this case. Just a Verilog idiosyncrasy.
always @(J.nl or in2 or in3) begin
out = (inl & in2) | in3; |

‘end) " ssensitivity” list,
R “-...__ keyword 7 triggers the action in
~~~~~~~~~~ the body.
endmodule

““~~--brackets multiple statements (not
necessary in this example.

Isn’t this just: assign out = (inl & in2) | in3;?
Why bother? .



Always Blocks

Always blocks give us some constructs that are impossible or
awkward in continuous assignments.

case statement example:

module mux4 (inO, inl, in2, in3, select, out);,
input in0,inl,in2,in3;
input [1:0] select;,
output out,
reg out;

o 2'b00: out=in0;
keyword 2’b01: out=inl;
2’bl10: out=in2;
2bll: out=in3;
endcase o
endmodule // mux4

~-..__The statement(s) corresponding
__to whichever constant matches
“select’, get applied.

Couldn’t we just do this with nested “if’s?
Well yes and no! 79



Always Blocks

Nested if-else example:

module mux4 (in0O, inl, in2, in3, select, out);,
input in0,inl,in2,in3;
input [1:0] select;,
output out,
reg out;,

always @ (in0O inl in2 in3 select)
if (select == 2’b00) out=in0;
else if (select == 2’b01) out=inl;,
else if (select == 2’b10) out=in2;
else out=in3;
endmodule // mux4

Nested if structure leads to “priority logic” structure, with different
delays for different inputs (in3 to out delay > than in0O to out delay).
Case version treats all inputs the same.

23
e



Defining Processor ALU in § mins

Q  Modularity is essential to the success of large designs
0 High-level primitives enable direct synthesis of behavioral descriptions (functions such as

additions, subtractions, shifts (<< and »>), etc.

Example: A 32-bit ALU Function Table

A[31:0] B[31:0] F2 F1 FO | Function
O 0 0O|A+B
32'd1 32'd1 O 0 1|A+1
01/ 101 FI0] 01 0|A-B
1 1 -
1= 1= 1 I 0 A1
+ - * 1 0 X/ A*B
‘ \
| F[2:1]
I
R[31:0]

24



Module Definitions

2-to-1 MUX

module mux32two(i0,1il,sel,out);

input [31:0] 10,71;
input sel;
output [31:0] out;

assign out = sel ? il :

endmodule

32-bit Adder
module add32(i0,i1,sum);
input [31:0] 10,11;
output [31:0] sum;

assign sum = i0 + il;

endmodule

32-bit Subtracter

module sub32(i0,i1,diff);

input [31:0] i0,11;
output [31:0] diff;

assign diff = i0 - i1;

endmodule

3-to-1 MUX

module mux32three(i0,il1l,i2,sel,out);
input [31:0] 10,71,12;

input [1:0] sel;

output [31:0] out;

reg [31:0] out;

always @ (i0 or il or i2 or sel)

begin
case (sel)
2’b00: out = 10;
2’b01: out = il;
2’b10: out = i2;
default: out = 32’bx;
endcase
end
endmodule

16-bit Multiplier
module mull6(i0,i1,prod);
input [15:0] i0,71;
output [31:0] prod;

// this is a magnitude multiplier
// signed arithmetic later
assign prod = i0 * il;

endmodule

25



Top-Level ALU Declaration

Q Given submodules:

module mux32two(i0,11,sel,out);
module mux32three(i0,i1,i2,sel,out);
module add32(i0,1i1,sum);

module sub32(i0,i1,diff);

module mull6(i0,1il,prod);

Q Declaration of the ALU Module;

module alu(a, b, f, r);
input [31:0] a, b;
input [2:0] f;
output [31:0] r;

wire [31:0] addmux_out, submux_out;
wire [31:0] add_out, sub_out, mul_out;

mux32two adder_mux(.io(b), .11(32'd1l), .sel(f[0]), .out(addmux_out));
mux32two sub_mux(.io(b), .i1(32'd1l), .sel(f[0]), .out(submux_out));

add32 our_adder(.i0(a), .il(addmux_out), .sum(add_out));
sub32 our_subtracter(.i0(a), .il(submux_out), .diff(sub_out));
mullé our_multiplier(.i0(al[15:0]), .i1(b[15:0]), .prod(mul_out));

mux32three output_mux(.i0(add_out), .il(sub_out), .i2(mul_out),

endmodule

A[31:0]

B[31:0]

324d1

3241

]

01

01

F[O]

]

+

*

0001 10

[2:1]

- F[2:0]

.sel(f[2:1]),

R[31:0]

.out(r));

26



Top-Level ALU Declaration, take 2

2 No Hierarchy:
Q Declaration of the ALU Module:

A[31:0] B[31:0]

module alu(a, b, f, r);
input [31:0] a, b; ! f2“1 01@2d1 F[O]
input [2:0] f; 1 ]
output [31:0] r; " x| [ F[2:0]
always @ (a or b or f) ‘

|
oot KLE e
00 01 10
3’b000: =a+ b; - F[2:1]

r=a
3’b001: r =a + 1’b1;
3’b010: r = a - b; R[31:0]
3’b011: r = a - 1°bl1;
3’b100: r = a * b;
default: r = 32’°bx;
endcase o o
endmodule Will this synthesize into 2 adders and 2

subtractors or 1 of each?




Review - Ripple Adder Example

a b ci
module FullAdder(a, b, ci, r, co);, l l l
input a, b, ci;,
output r, co; FA
assign r = a * b * ci; l l
assign co = a&ci + a&b + bé&cin;
co r
endmodule
a3 b3 az bz al bi a0 bo
e e ey e
module Adder (A, B, R);,
input [3:0] A, FA FA FA FA
input [3:0] B,
output [4:0] R; Cul l || l ] l l
wire cl, c2, c3; 3 e " ™
FullAdder
addo(.a(A[0]), .b(B[0]), .ci(1b0), .co(cl), .r(R[O]) ),
addil(.a(A[1]), .b(B[1]), .ci(cl), .co(c2), .r(R[1]) ),

add2(.a(A[2]), .b(B[2]), .ci(c2), .co(c3), .r(R[2]) ),
add3(.a(A[3]), .b(B[3]), .ci(c3), .co(R[4]), .r(R[3]) ),
endmodule
28



Example - Ripple Adder Generator

Parameters give us a way to generalize our designs. A module becomes a “generator” for
different variations. Enables design/module reuse. Can simplify testing.

Declare a parameter with default value.

module Adder (A, B, R);
' parameter N = 4; | Note: this is not a port. Acts like a “synthesis-time” constant.
‘ input [N-1:0] A, ‘
input [N-1:0] B;
output [N:0] R;
wire [N:0] C; -~ variable exists only in the specification - not in the final circuit.

~—-—Replace all occurrences of “4” with “N”.

Keyword that denotes synthesis-time operations

For-loop creates instances (with unique names)

§for (i=0,; i<N; i=i+l) begin:bit
FullAdder add(.a(A[i], .b(B[i])

, -ci(C[1]), .co(C[i+1]), .r(R[i]));

end
endgenerate
Adder adderd ( ... );
assign C[0] = 1'b0;
assign R[N] = C[N];

Adder #(.N(64))

endmodule adder64 ( ... );

Overwrite parameter
N at instantiation.

29



More on Generate Loop

Permits variable declarations, modules, user defined primitives, gate
primitives, continuous assignments, initial blocks and always blocks to be
instantiated multiple times using a for-loop.

// Gray-code to binary-code converter
module gray2binl (bin, gray);

parameter SIZE = 8; variable exists only in
output [SIZE-1:0] bin; the specification - not in
input [SIZE-1:0] gray; the final circuit.

Keywords that denotes
synthesis-time operations

For-loop creates instances

assign_bin[i] = “gray[SIZE-1:i]; . C
end endgenerate ~—-.. of assignments
endmodule Loop must have

constant bounds

generate if-else-if based on an expression that is deterministic at the
time the design is synthesized.

generate case : selecting case expression must be deterministic at the
time the design is synthesized.

30



Verilog in EECS 151/251A

Q We use behavioral modeling at the bottom of the hierarchy

Q Use instantiation to 1) build hierarchy and, 2) map to FPGA and ASIC
resources not supported by synthesis.

4 Favor continuous assign and avoid always blocks unless:
= no other alternative: ex: state elements, case
» helps readability and clarity of code: ex: large nested if else

Q Use named ports.

A Verilog is a big language. This is only an introduction.
» Complete IEEE Verilog-Standard document (1364-2005) linked to class website.
» Harris & Harris book chapter 4 is a good source.
» Be careful of what you read on the web. Many bad examples out there.
= We will be introducing more useful constructs throughout the semester. Stay tuned!




