
EE141

EECS 151/251A
Spring	2024	
Digital	Design	and	Integrated	Circuits

Instructor:	
Wawrzynek

Lecture 4: Verilog 2 -
Sequencial Circuits

Announcements
❑ Problem Set 1 due Today!.
❑ Problem Set 2 posted due next Monday!
❑ Don’t forget to ask questions or offer

comments!
❑ Enrollment issues?

2

Verilog – So Far
❑ Combinational Logic Specification
❑ Two types of description:

▪ Structural: design as a composition of components (also
called a netlist)

– Maps directly into hardware
▪ Behavioral: design as a set of equations or language

constructs
– Requires “compiler” (synthesis tool) to generate hardware

❑ With parameters we define “generators”
3

EE141

Sequential Elements

5

Only Two Types of Circuits Exist
❑ Combinational Logic Blocks (CL)
❑ State Elements (registers, memories)

• State elements are
mixed in with CL
blocks to control the
flow of data.

Register file
or
Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in
large groups by
themselves for “long-
term” data storage.

6

Register Details…What’s inside?

❑ n instances of a “Flip-Flop”
❑ Flip-flop name because the output flips and flops between 0 and 1 (the

two stable states)
❑ D is “data” input, Q is “output”
❑ Commonly used flip-flops are really “d-type edge-triggered flip-flop”

Register FF FF FF

dn-1

qn-1

d1 d0

q1 q0

clk

n

n

clk

D

Q

7

Flip-flop Timing Waveforms
❑ Edge-triggered d-type flip-flop

❑ This one is “positive edge-triggered”
❑ “On the rising edge of the clock, the input d is sampled and transferred to

the output. At all other times, the input d is ignored.”
❑ Example waveforms:

Uses for State Elements
1) As a place to store values for some
indeterminate amount of time:
▪ Register files (like x1-x31 on the RISC-V)
▪ Memory (caches, and main memory)

2) Help control the flow of information between
combinational logic blocks.
▪ State elements are used to hold up the movement of information at the

inputs to combinational logic blocks and allow for orderly passage
▪ Used to break long paths of logic to shorten clock period (improve

performance)

8

EE141

Sequential Elements
in Verilog

10

State Elements in Verilog
Always blocks are the only way to specify the “behavior” of state elements.
Synthesis tools will turn state element behaviors into state element instances.

module dff(q, d, clk, rst);

 input d, clk, rst;

 output reg q;

 always @(posedge clk)

 if (rst)

 q <= 1’b0;

 else

 q <= d;

endmodule

D-flip-flop with synchronous reset example:

keyword

“always @ (posedge clk)” is key
to flip-flop generation.

This gives priority to
reset over d.

On FPGAs, maps to native flip-flop,
on ASIC, to a standard cell.

d q
rclk
rst

Unlike logic gates, their are no primitive flip-flops in
Verilog. Although, we have defined a set for your use.

EECS151 “no register inference policy”
❑ Instead of using flip-flop and register inference, all

EECS151/251A Verilog specifications must use explicit
instantiation of register modules from the “EECS151 library”.

❑ Policy applies to lecture, discussion, lab, project, and problem
sets.

❑ For simulation and synthesis use:
 `include “EECS151.v”

11

Using predefined register modules allows you to
simplify the specification of sequential circuits, and
enforces separation of combination logic and state
elements (a good design style).

EECS151 Registers
❑ All registers are “N”

bits wide - the value of
N is specified at
instantiation

❑ All positive edge
triggered.

12

d qclk

On the rising clock edge if clock enable (ce) is 0 then the
register is disabled (it’s state will not be changed).

module REGISTER_CE(q, d, ce, clk);
parameter N = 1;

module REGISTER(q, d, clk);
parameter N = 1;

d qclk
ce

d q

rclk rst

d q

rclk
ce

rst

module REGISTER_R(q, d, rst, clk);
parameter N = 1;
parameter INIT = {N{1'b0}};

On the rising clock edge if reset (rst) is 1 then the state
is set to the value of INIT. Default INIT value is all 0’s.

module REGISTER_R_CE(q, d, rst, ce, clk);
parameter N = 1;
parameter INIT = {N{1b’0}};

Reset (rst) has priority over clock enable (ce).

4-bit wrap-around counter

13

4
value

clk

enablereset

0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14,
15, 0, 1, …

+1

4-bit “count to 6” counter

14

4
value

clk

reset

0, 1, 2, 3, 4, 5, 6, 0, 1, …

=6

+

4-bit “count down from 11”

15

-1
4

value

clk

reset

11, 10, 9, 8, 7, 6, 5, 4, 3,
2, 1, 0, 11, …

[0]
[1]

[2]
[3]

module ParToSer(ld, X, out, clk);
 input [3:0] X;
 input ld, clk;
 output out;

 wire [3:0] Q;
 wire [3:0] NS;

 assign NS =
(ld) ? X : {Q[0], Q[3:1]};

 REGISTER state #(4)
(.q(Q), .d(NS), .clk(clk));

 assign out = Q[0];
endmodule

16

Example - Parallel to Serial Converter

Specifies the
muxing with
“rotation”

Instantiates a register (flip-flops)
to be rewritten every cycle

connect output

ld

out
out

Verilog in EECS 151/251A
❑ We use behavioral modeling at the bottom of the hierarchy
❑ Use instantiation to 1) build hierarchy and, 2) map to FPGA and ASIC

resources not supported by synthesis.
❑ Favor continuous assign and avoid always blocks unless:

▪ no other alternative: ex: case statement
▪ helps readability and clarity of code: ex: large nested if else

❑ Obey the no register inference policy.
❑ Use named ports.
❑ Verilog is a big language. This is only an introduction.

▪ Complete IEEE Verilog-Standard document (1364-2005) linked to class website.
▪ Harris & Harris book chapter 4 is a good source.
▪ Be careful of what you read on the web. Many bad examples out there.
▪ We will be introducing more useful constructs throughout the semester. Stay tuned!

17

Final thoughts on Verilog Examples
Verilog looks like C, but it describes hardware:
Entirely different semantics: multiple physical elements with parallel activities and temporal
relationships.

A large part of digital design is knowing how to write Verilog that gets you
the desired circuit. First understand the circuit you want then figure out how
to code it in Verilog. If you try to write Verilog without a clear idea of the
desired circuit, you will struggle.

As you get more practice, you will know how to best write Verilog for a
desired result.

Be suspicious of the synthesis tools! Check the output of the tools to make
sure you get what you want.

18

