

EECS 151/251A Spring 2024 Digital Design and Integrated Circuits

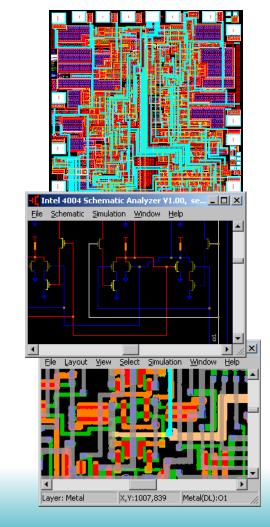
Instructor: J. Wawrzynek

Lecture 5: ASICs, FPGAs

Implementation Alternatives

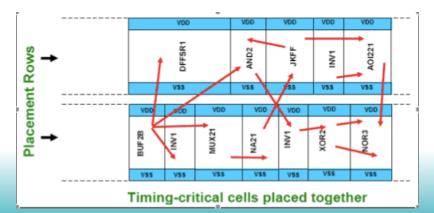
FPGAs

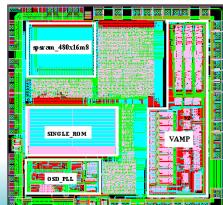
ASICs

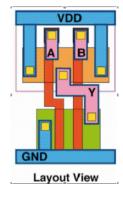

Implementation Alternative Summary

Full-custom:	All circuits/transistors layouts optimized for application.
Standard-cell (ASIC):	Small function blocks/"cells" (gates, FFs) automatically placed and routed.
Gate-array (structured ASIC):	Partially prefabricated wafers with arrays of transistors customized with metal layers or vias.
FPGA:	Prefabricated chips customized with loadable latches or fuses.
Microprocessor:	Instruction set interpreter customized through software.
Pomain Specific Processor:	Special instruction set interpreters (ex: DSP, NP, GPU, TPU).

What are the important metrics of comparison?

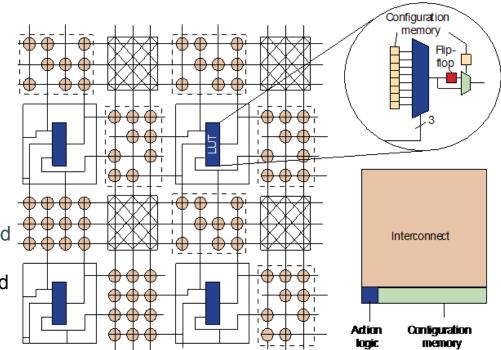

Full-Custom


- Circuit styles and transistors are custom sized and drawn to optimize die, size, power, performance.
- High NRE (non-recurring engineering) costs
 - Time-consuming and error prone layout
- Hand-optimizing the layout can result in small die for low per unit costs, extremelow-power, or extreme-high-performance.
- □ Common today for **analog design**.
- High NRE usually restricts use to highlyconstrained and cost insensitive markets.



Standard-Cell ASIC Design

- Based around a set of pre-designed (and verified) cells
 - Ex: NANDs, NORs, Flip-Flops, counters slices, buffers, …
- □ Each cell comes complete with:
 - layout (perhaps for different technology nodes and processes),
 Simulation, delay, & power models.
- Chip layout is automatic, reducing NREs (usually no hand-layout).
- (Slightly) less optimal use of area and power, leading to higher per die costs than fullcustom.
- Commonly used with other predesigned blocks (large memories, I/O blocks, etc.)



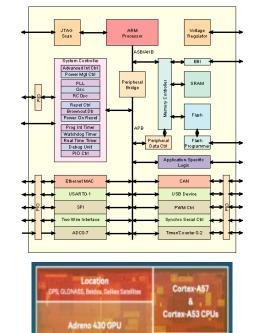


Field Programmable Gate Arrays (FPGA)

- Two-dimensional array of simple logic- and interconnection-blocks.
- Typical architecture: Look-uptables (LUTs) implement any function of n-inputs (n=3 in this case).
- Optional connected Flip-flop with each LUT.
- Fuses, EPROM, or Static RAM cells are used to store the "configuration".
 - Here, it determines function implemented by LUT, selection of Flip-flop, and interconnection points.
- Many FPGAs include special circuits to accelerate adder carry-chain and many special cores: RAMs, MAC, Enet, PCI, SERDES, CPUs, ...

- **ASIC:** Higher NRE costs (10's of \$M). Relatively Low cost per die (10's of \$ or less).
- FPGAs: Low NRE costs. Relatively low silicon efficiency ⇒ high cost per part (> 10's of \$ to 1000's of \$).
- **Cross-over volume** from cost effective FPGA design to ASIC was often in the 100K range.

Microprocessors / Microcontrollers


- Where relatively low performance and/or high flexibility is needed, a viable implementation alternative:
 - Software implements desired function
 - "Microcontroller", often with built in nonvolatile program memory and used as single function.
- Furthermore, instruction set processors (microprocessors) are a ubiquitous "abstraction" level.
 - "Synthesizable" RTL model ("soft core", available in HDL)
 - Often mixed into other digital designs
- Their implementation hosted on a variety of implementation platforms: standard-cell ASICs, FPGA, other processors?

§	Assembler							
	ADD{cond}{S} Rd, Rn, <operand2></operand2>							
	ADC{cond}{S} Rd, Rn, <operand2></operand2>							
5E	QADD{cond} Rd, Rm, Rn							
5E	QDADD{cond} Rd, Rm, Rn							
	SUB{cond}{S} Rd, Rn, <operand2></operand2>							
	<pre>SBC{cond}{S} Rd, Rn, <operand2></operand2></pre>							
	RSB{cond}{S} Rd, Rn, <operand2></operand2>							
	RSC{cond}{S} Rd, Rn, <operand2></operand2>							
5E	QSUB{cond} Rd, Rm, Rn							
5E	QDSUB{cond} Rd, Rm, Rn							
2	MUL{cond}{S} Rd, Rm, Rs							
2	MLA{cond}{S} Rd, Rm, Rs, Rn							
M	UMULL{cond}{S} RdLo, RdHi, Rm, Rs							
M	UMLAL{cond}{S} RdLo, RdHi, Rm, Rs							
	UMAAL{cond} RdLo, RdHi, Rm, Rs							

System-on-chip (SOC)

- Pre-verified block designs, standard bus interfaces (or adapters) ease integration - lower NREs, shorten TTM.
- Brings together: standard cell blocks, custom analog blocks, processor cores, memory blocks, embedded FPGAs, ...
- Standardized on-chip buses (or hierarchical interconnect) permit "easy" integration of many blocks.
- Ex: AXI, AMBA, Sonics, ...
- "IP Block" business model: Hard- or soft-cores available from third party designers.
- ARM, inc. is the shining example. Hard- and "synthesizable" RISC processors.
- ARM and other companies provide, Ethernet, USB controllers, analog functions, memory blocks, ...

Charles 12 Full

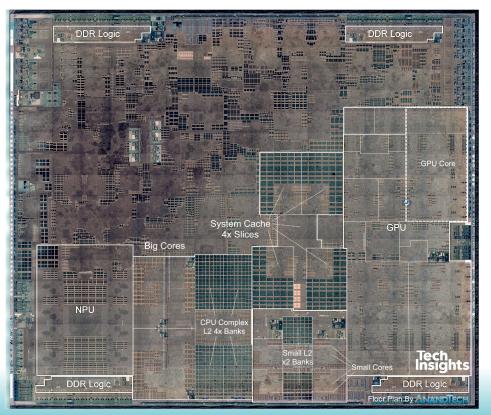
Display Processing

Al, Mincoll, picture enforcement

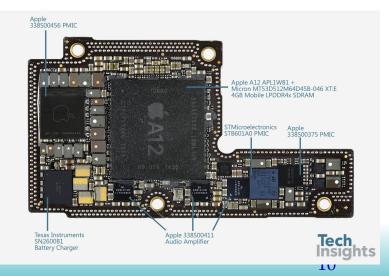
Memory

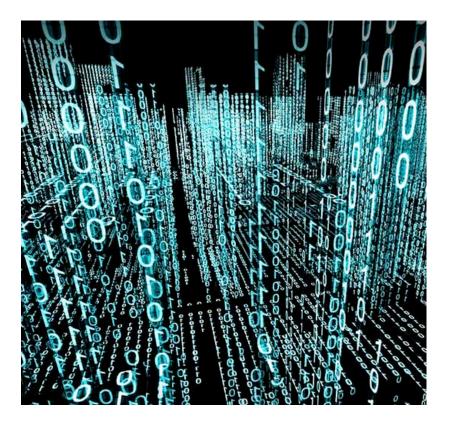
LPOORS

Hexagon DSP


Sensor Engine

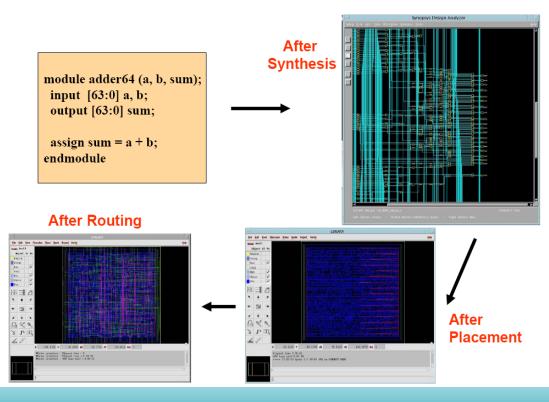
Qualcomm Snapdragon

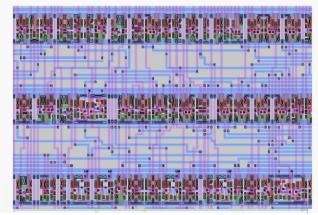

9


Modern(-ish) System-On-A-Chip (SOC)

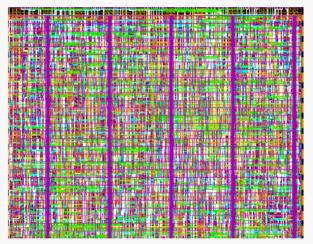
□ Apple A12 Bionic • 7nm CMOS, Up to 2.49GHz

- 2x Large CPUs
- 4x Small CPUs
- GPUs
- Neural processing unit (NPU)
- Lots of memory
- DDR memory interfaces

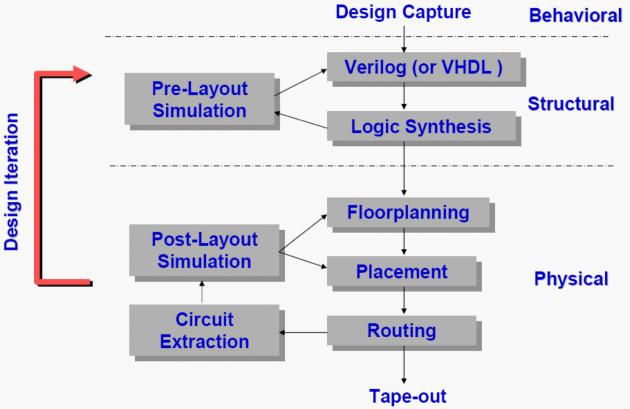




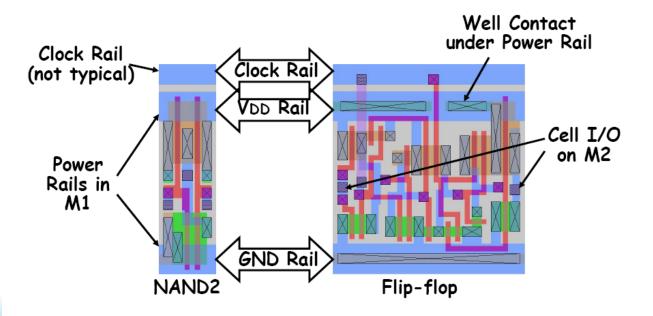
Verilog to ASIC layout flow


□ "push-button" approach

Standard cell layout methodology


1um, 2-metal process

Modern sub-100nm process "Transistors are free things that fit under wires"


- With limited # metal layers, dedicated routing channels were needed
- Now, many layers and wires routed over cells. Currently area often dominated by wires

The ASIC flow

Standard cell design

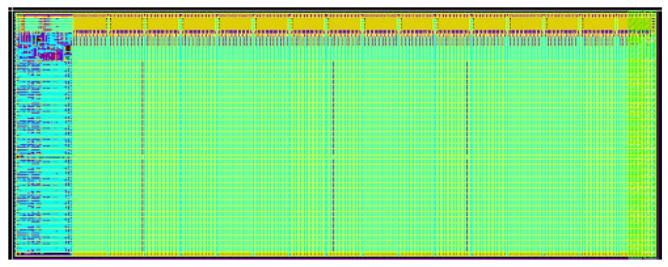
Cells have standard height but vary in width Designed to connect power, ground, and wells by abutment

Standard cell characterization

Power Supp	ly Line (V _{DD})
Path	1.2V - 125°C
In1—t _{pLH}	0.073+7.98C+0.1
In 1—t _{pHL}	0.069+8.43C+0.2
In2—t _{pLH}	0.101+7.97C+0.2
In2—t _{pHL}	0.097+8.42C+0.2
In 3— t_{pLH}	0.120+8.00C+0.2
In3—t _{pHL}	0.110+8.41C+0.2
() C T	-input NAND o from ST Microe C = Load capao T = input rise/fa Fround Supply

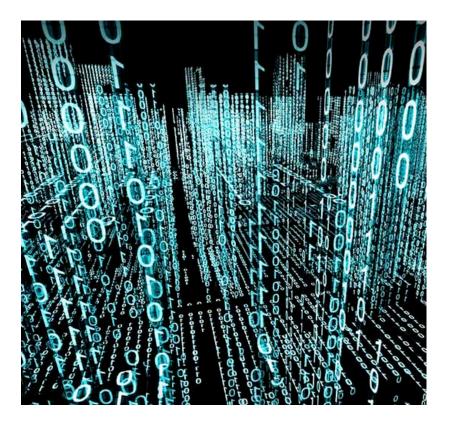
	Ty Line (V _{DD}) Den	
Path	1.2V - 125°C	1.6V - 40°C
$In1-t_{pLH}$	0.073+7.98C+0.317T	0.020+2.73C+0.253T
In $1-t_{pHL}$	0.069+8.43 <i>C</i> +0.364 <i>T</i>	0.018+2.14 <i>C</i> +0.292 <i>T</i>
$In2-t_{pLH}$	0.101+7.97 <i>C</i> +0.318 <i>T</i>	0.026+2.38C+0.255T
$In2-t_{pHL}$	0.097+8.42 <i>C</i> +0.325 <i>T</i>	0.023+2.14 <i>C</i> +0.269 <i>T</i>
$In3-t_{pLH}$	0.120+8.00C+0.318T	0.031+2.37C+0.258T
$In3-t_{pHL}$	0.110+8.41 <i>C</i> +0.280 <i>T</i>	0.027+2.15C+0.223T

Dolay in (ne)!!


3-input NAND cell (from ST Microelectronics): C = Load capacitance T = input rise/fall time

Ground Supply Line (GND)

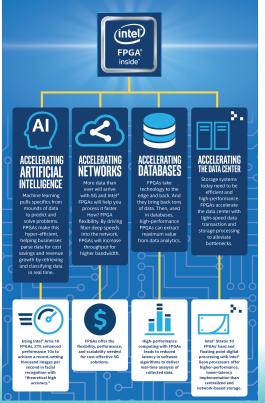
Each library cell (FF, NAND, NOR, INV, etc.) and the variations on size (strength of the gate) is fully characterized across temperature, loading, etc.


"Macro" modules / cells

256×32 (or 8192 bit) SRAM Generated by hard-macro module generator

 Generate highly regular structures (entire memories, multipliers, etc.) with a few lines of code

 Verilog models for memories automatically generated based on size



FPGAs are in widespread use

ACCELERATING THE FUTURE WITH INTEL FPGAS

Field programmable gate arrays (FPGAs) are taking computing to new heights by offering engineers the ability to program digital logic in the field on a chip many times — from anywhere. Here's what a system-level integrated circuit like an FPGA can do for you.

And in the Data-Center

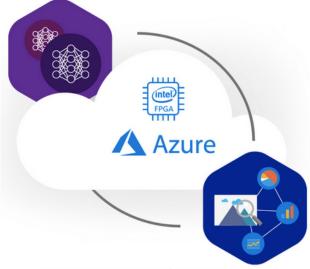
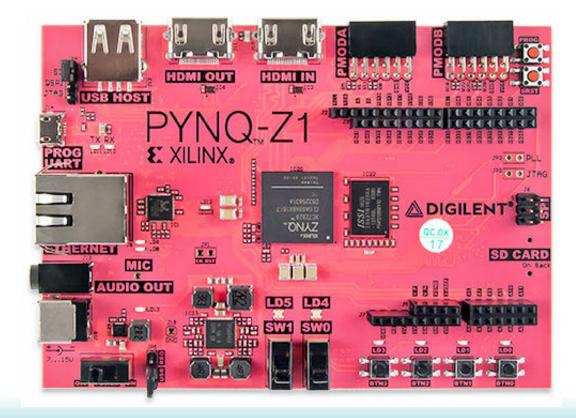
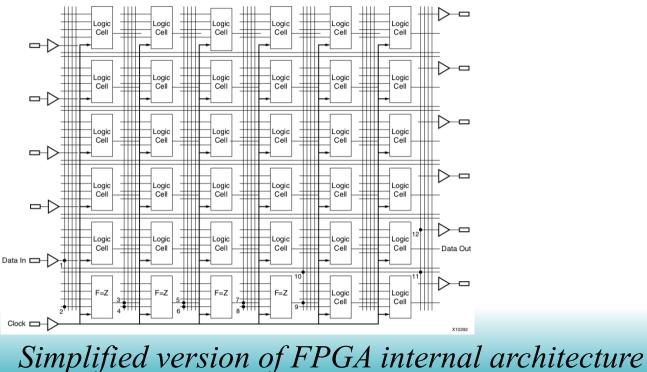



Image credit: Copyright © 2018 Microsoft Corporation. All rights reserved.

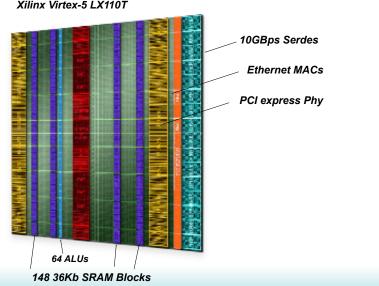

EECS151/251A FPGA Lab Board

FPGA Overview

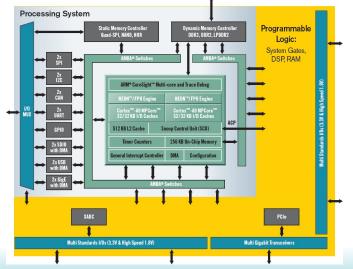
- Basic structure: two-dimensional array of logic blocks and flip-flops with a means for the user to configure (program):
 - 1. the interconnection between the logic blocks,
 - 2. the function of each block.

23

Why are FPGAs Interesting?

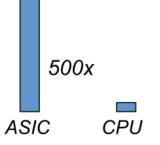

□ Technical viewpoint:

- For hardware/system-designers, like ASICs only better: "Tape-out" new design every few minutes/hours.
- "reconfigurability" or "reprogrammability" may offer other advantages over fixed logic?
 - In-field reprogramming? Dynamic reconfiguration? Self-modifying hardware, evolvable hardware?


Of course, the higher flexibility comes at the expense of larger die area, slower circuits, and more energy per operation.

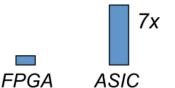
Why are FPGAs Interesting?

- Logic capacity now only part of the story: on-chip RAM, highspeed I/Os, "hard" function blocks, ...
- Modern FPGAs are "reconfigurable systems on a chip"



Xilinx ZYNQ - embedded ARM cores

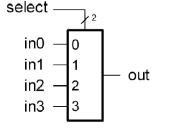
Energy Efficiency of CPU versus ASIC versus FPGA

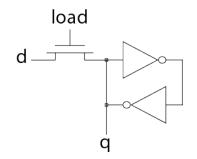

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. Understanding sources of inefficiency in general-purpose chips. SIGARCH Comput. Archit. News, 38:37–47, June 2010.

Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. In Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays, FPGA '06, pages 21–30, New York, NY, USA, 2006. ACM

∴ FPGA : CPU = 70x

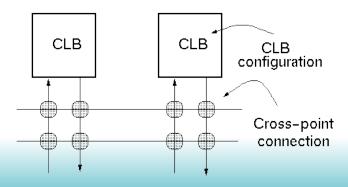
Similar story for performance efficiency

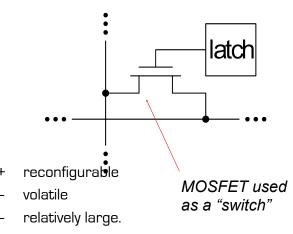



FPGA Internals

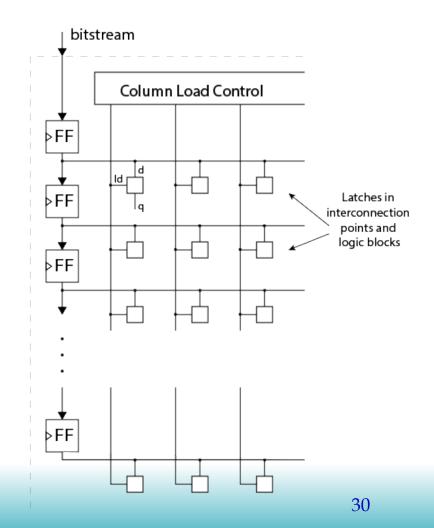
Background for upcoming technical details

Review: <u>mux</u> or multiplexor is a combinational logic circuit that chooses between 2^N inputs under the control of N control signals.

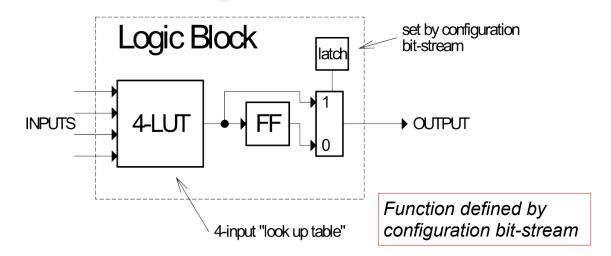

A <u>latch</u> is a 1-bit memory (similar to a but "level sensitive" not edge-triggered, closer to an SRAM storage cell).


FPGA Programmability

- FPGA programmability allows users to:
 - 1. define function of configurable logic blocks (CLBs),
 - 2.establish interconnection paths between CLBs
 - 3.set other options, such as clock, reset connections, and I/O.
- Most FPGAs have "SRAM based" programmability.


Programmable Cross-points

• Latch-based (Xilinx, Intel/Altera, ...)



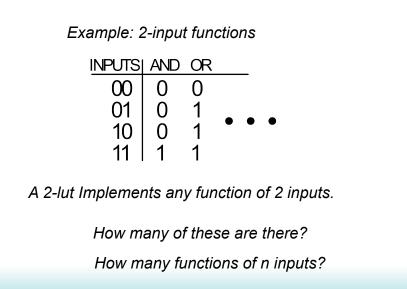
User Programmability

- □ Latches store the configuration.
- Configuration *bitstream* is loaded under user control.
- "partial reconfiguration": a selective part of the array can be reprogrammed without disturbing the other parts.
- Dynamic / runtime reconfiguration: reprogramming during a computation.
- Most commonly the entire device is programmed when the system is booted.

Simplified FPGA Logic Block

□ Look up table (LUT)

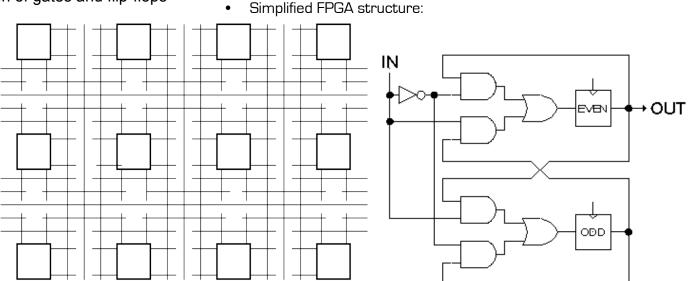
- implements any combinational logic function
- Register (Flip-flop)
 - optionally stores output of LUT


4-LUT Implementation


- □ LUT size named by number of inputs
- n-bit LUT is implemented as a 2ⁿ x 1 memory:
 - inputs choose one of 2ⁿ memory locations.
 - memory locations (latches) are loaded with values from user's configuration bit stream.
 - Inputs to mux control are the LUT inputs.
- □ Result is a general purpose "logic gate".
 - n-LUT can implement any function of n inputs!

LUT as general logic gate

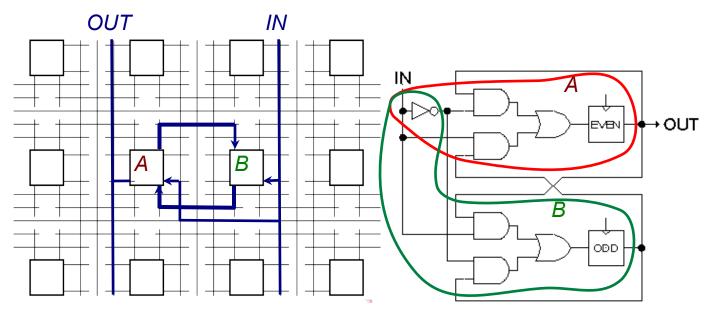

- An n-LUT is a direct implementation of a function truth-table.
- Each latch location holds the value of the function corresponding to one input combination.


FPGA Generic Design Flow

- Design Entry:
 - HDL (hardware description languages: Verilog, VHDL)
- Design Implementation:
 - Logic synthesis (in case of using HDL entry) followed by,
 - Partition, place, and route to create configuration bit-stream file
- Design verification:
 - Optionally use simulator to check function,
 - Load design onto FPGA device (cable connects PC to development board), optional "logic scope" on FPGA
 - check operation at full speed in real environment.

Example Partition, Placement, and Route

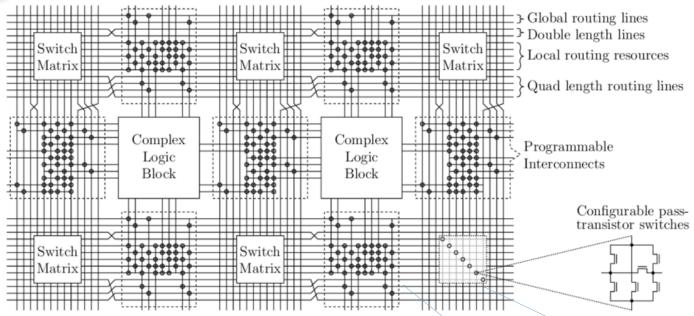
- Example Circuit:
 - collection of gates and flip-flops


Circuit combinational logic must be "covered" by 4-input 1-output LUTs.

Flip-flops from circuit must map to FPGA flip-flops. (Best to preserve "closeness" to CL to minimize wiring.)

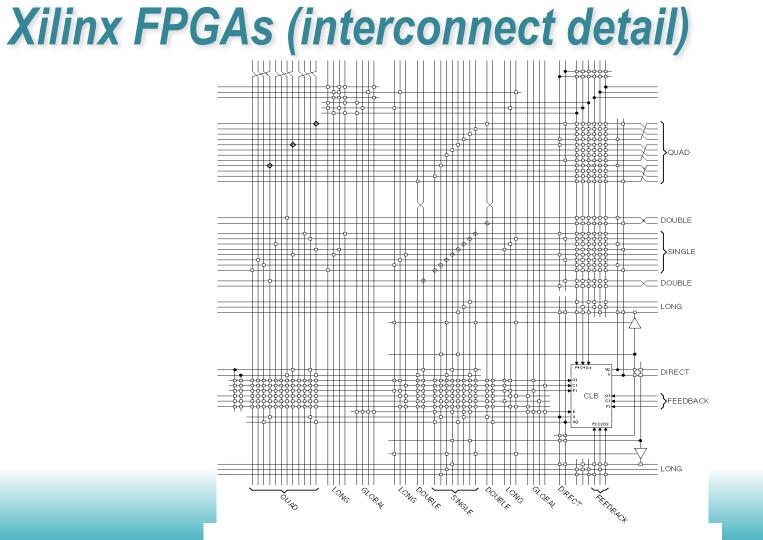
Best placement in general attempts to minimize wiring.

Vdd, GND, clock, and global resets are all "prewired".

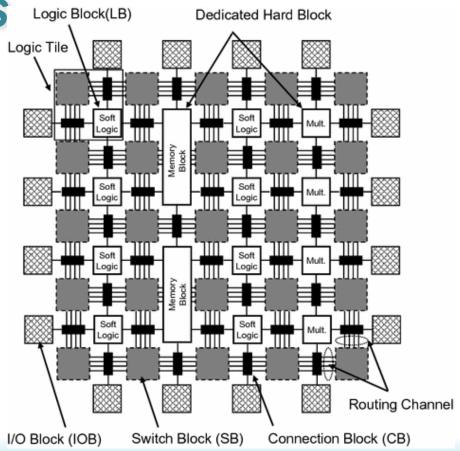

Example Partition, Placement, and Route

Two partitions. Each has single output, no more than 4 inputs, and no more than 1 flip-flop. In this case, inverter goes in both partitions.

Note: (with 4-LUTs) the partition can be arbitrarily large as long as it has not more than 4 inputs and 1 output, and no more than 1 flip-flop.

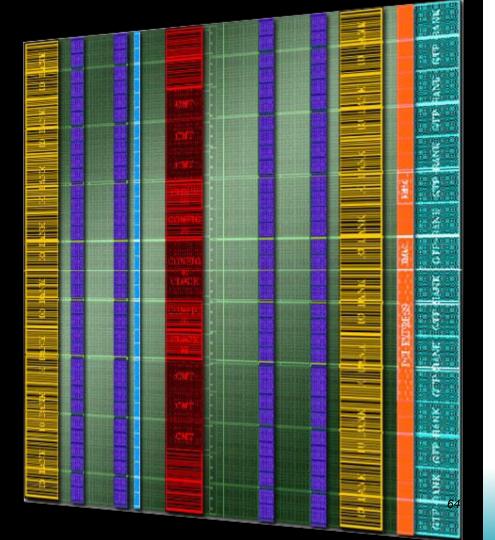

Configurable Interconnect

Design Challenges (topology):


- traversing long wires incurs delay and energy
- switches (transistors) add significant delay
- Mapping time

switch matrix could be more richly populated "connection block"

Embedded Hard Blocks


- Many important functions are not efficient when implemented in the reconfigurable fabric:
 - multiplication, large memory, …
- Dedicated blocks take relatively little area and therefore could go unused.

Colors represent different types of resources:

Logic Block RAM DSP (ALUs) Clocking I/O Serial I/O + PCI

A routing fabric runs throughout the chip to wire everything together.

Virtex 6-LUTs: Composition of 5-LUTs

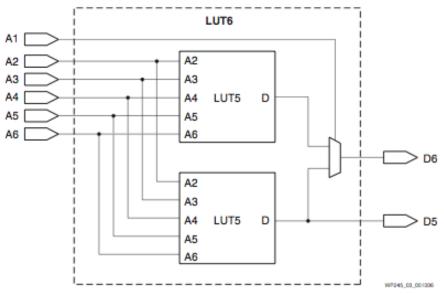


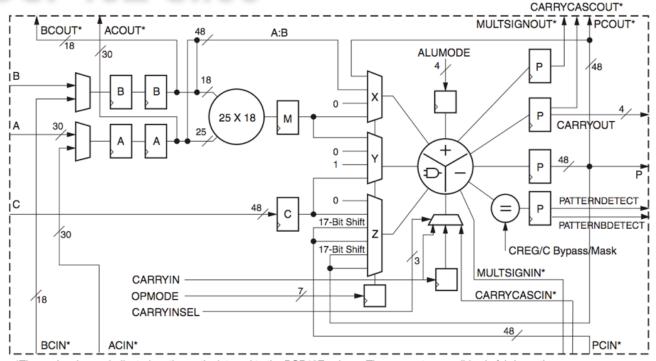
Figure 3: Block Diagram of a Virtex-5 6-Input LUT

May be used as one 6-input LUT (D6 out) ...

... or as two 5-input LUTS (D6 and D5)

Combinational logic (post configuration)

The simplest view of a slice


Four 6-LUTs

Four Flip-Flops

Switching fabric may see combinational and registered outputs.

An actual Virtex slice adds many small features to this simplified diagram. We show them one by one ...

Virtex DSP48E Slice

*These signals are dedicated routing paths internal to the DSP48E column. They are not accessible via fabric routing resources.

UG193_c1_01_032806

Efficient implementation of multiply, add, bit-wise logical.

Zynq-7000 SoC Data Sheet: Overview

DS190 (v1.11.1) July 2, 2018

Product Specification

Zynq-7000 SoC First Generation Architecture

The Zynq®-7000 family is based on the Xilinx SoC architecture. These products integrate a feature-rich dual-core or single-core ARM® Cortex[™]-A9 based processing system (PS) and 28 nm Xilinx programmable logic (PL) in a single device. The ARM Cortex-A9 CPUs are the heart of the PS and also include on-chip memory, external memory interfaces, and a rich set of peripheral connectivity interfaces.

Programmable Logic (PL)

Configurable Logic Blocks (CLB)

- Look-up tables (LUT)
- Flip-flops
- Cascadeable adders

36 Kb Block RAM

- True Dual-Port
- Up to 72 bits wide
- Configurable as dual 18 Kb block RAM

DSP Blocks

- 18 x 25 signed multiply
- 48-bit adder/accumulator
- 25-bit pre-adder

Programmable I/O Blocks

- Supports LVCMOS, LVDS, and SSTL
- 1.2V to 3.3V I/O
- Programmable I/O delay and SerDes

JTAG Boundary-Scan

IEEE Std 1149.1 Compatible Test Interface

PCI Express® Block

- Supports Root complex and End Point configurations
- Supports up to Gen2 speeds
- Supports up to 8 lanes

Serial Transceivers

- Up to 16 receivers and transmitters
- Supports up to 12.5 Gb/s data rates

Two 12-Bit Analog-to-Digital Converters

- On-chip voltage and temperature sensing
- Up to 17 external differential input channels
- One million samples per second maximum conversion rate

Table	1:	Zynq-7000 ar	nd Zynq-7000S	SoCs (Cont'd)
-------	----	--------------	---------------	---------------

	Device Neme	7 70076	Z-7012S	7 70146	7 7010	7 7015	7 7000	7 7020	7 7025	7 7045	7 7100	
	Device Name	Z-7007S	2-70125	Z-7014S	Z-7010	Z-7015	Z-7020	Z-7030	Z-7035	Z-7045	Z-7100	
	Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	XC7Z030	XC7Z035	XC7Z045	XC7Z100	
	Xilinx 7 Series Programmable Logic Equivalent	Artix®-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Kintex®-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA	
	Programmable Logic Cells	23K	55K	65K	28K	74K	85K	125K	275K	350K	444K	
	Look-Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900	218,600	277,400	
U	Flip-Flops	28,800	68,800	81,200	35,200	92,400	106,400	157,200	343,800	437,200	554,800	
le Logic	Block RAM (# 36 Kb Blocks)	1.8 Mb (50)	2.5 Mb (72)	3.8 Mb (107)	2.1 Mb (60)	3.3 Mb (95)	4.9 Mb (140)	9.3 Mb (265)	17.6 Mb (500)	19.2 Mb (545)	26.5 Mb (755)	
Programmable	DSP Slices (18x25 MACCs)	66	120	170	80	160	220	400	900	900	2,020	
Progre	Peak DSP Performance (Symmetric FIR)	73 GMACs	131 GMACs	187 GMACs	100 GMACs	200 GMACs	276 GMACs	593 GMACs	1,334 GMACs	1,334 GMACs	2,622 GMACs	
	PCI Express (Root Complex or Endpoint) ⁽³⁾		Gen2 x4			Gen2 x4		Gen2 x4	Gen2 x8	Gen2 x8	Gen2 x8	
	Analog Mixed Signal (AMS) / XADC	2x 12 bit, MSPS ADCs with up to 17 Differential Inputs										
	Security ⁽²⁾	AES and SHA 256b for Boot Code and Programmable Logic Configuration, Decryption, and Authentication										

State-of-the-Art - Xilinx FPGAs

	45nm			28nm		20nm	20nm 16nm		I				
	SPARTAN. [©]		\	VIRTEX." VIRTE			VIRTEX						
				KINTEX.?" ARTIX.?" PARTAN.?"		KINTEX	_	KINTE	ALE*	Vir	tex	Ultre	a-scale
Device Name	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU27P	VU29P	VU31P	VU33P	VU35P	VU37P	
System Logic Cells (K)	862	1,314	1,724	2,586	2,835	3,780	2,835	3,780	962	962	1,907	2,852	
CLB Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	2,592	3,456	879	879	1,743	2,607	
CLB LUTs (K)	394	601	788	1,182	1,296	1,728	1,296	1,728	440	440	872	1,304	
Max. Dist. RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	36.2	48.3	12.5	12.5	24.6	36.7	
Total Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	70.9	94.5	23.6	23.6	47.3	70.9	
UltraRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	270.0	360.0	90.0	90.0	180.0	270.0	
HBM DRAM (GB)	-	-	-	-	-	-	-	-	4	8	8	8	
HBM AXI Interfaces	-	-	-	-	-	-	-	-	32	32	32	32	
Clock Mgmt Tiles (CMTs)	10	20	20	30	12	16	16	16	4	4	8	12	
DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	9,216	12,288	2,880	2,880	5,952	9,024	
Peak INT8 DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	28.7	38.3	8.9	8.9	18.6	28.1	
PCIe® Gen3 x16	2	4	4	6	3	4	1	1	0	0	1	2	
PCIe Gen3 x16/Gen4 x8 / CCIX ^[1]	-	-	-	-	-	-	-	-	4	4	4	4	
150G Interlaken	3	4	6	9	6	8	6	8	0	0	2	4	
100G Ethernet w/ KR4 RS-FEC	3	4	6	9	9	12	11	15	2	2	5	8	
Max. Single-Ended HP I/Os	520	832	832	832	624	832	520	676	208	208	416	624	
GTY 32.75Gb/s Transceivers	40	80	80	120	96	128	32	32	32	32	64	96	
GTM 58Gb/s PAM4 Transceivers							32	48					
100G / 50G KP4 FEC							16/32	24/48					
Extended ⁽²⁾	-1 -2 -2L -3	-1 -2 -2L -3	-1-2-2L-3	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -2L -3	-1-2-2L-3	-1 -2 -2L -3	-1 -2 -2L -3	-1-2-2L-3	-1 -2 -2L -3	46
Industrial	-1-2	-1 -2	-1 -2	-1 -2	-1 -2	-1-2	-1 -2	-1 -2	-	-	-	-	