EECS 151/251A

Spr

ing 2024

ign and Integrated

7
)
c
>
N
n M
Q o
o, 8o
O = >
-3 S5 c
PE LS
oov — -

SR S ST

S LR

Lecture 6:

Combinational Logic
Representations

Announcements

4 PS 2 due tonight!
Q HW 3 posted, due in a week.

@
=
-~

S
o

Q Three representations for

combinational logic:

J

= fruth tables

and

J

» graphical (logic gates)
» algebraic equations

Q Boolean Algebra

Q Boolean Simplification

Q Multi

J

-level Logic

Q NAND/NOR

ions of
Combinational Logic

Representat

e et M i
=3 S e S e N
S W R T

— T e S s
> T b

Combinational Logic (CL) Defined

X0 —— L .0
: F X—t— F Y
xn—l—.a- —..-ym—l
Nap——
y,=f(x0,....,xn-1), where x, y take on values {0,1}.

Y is a function of only X, i.e., it is a “pure function”.

Q If we change X then Y will change immediately (well almost!).
Q There is an implementation dependent delay from X to Y.
4 Y is a function of nothing other than the current inputs values.

CL Block Example #1

x0 —— output 1 if either

x0=1lorxl=1 | .v¥
but not both

X1 ——+

Truth Table Description:

XOx1|y
O OO
0O 1|1
1 0] 1
1110

Boolean Equation:
Yo = (X5 AND not(x,)

OR (not{x,) AND x,]

—_ 1 1
Yo = XgXq T XgXy

Gate Representation:

x0

x1

=Dy

Boolean Algebra/Logic Circuits

A Why are they called “logic circuits™?

Q Logic: The study of the principles of reasoning.

QA The 19th Century Mathematician, George Boole,
developed a math. system (algebra) involving logic,
Boolean Algebra.

QA His variables took on TRUE, FALSE

QA Later Claude Shannon (father of information theory)
showed (in his Master's thesis!) how to map Boolean

A%y

Algebra to digital circuits: ablAND ablOR alNOT
a Primitive functions of Boolean Algebra: 8_?? g_$$— ? g
10| 0O 10| 1
11 1 111 —[>o—

Why was this novel/innovative?

D 1> ,

Other logic functions of 2 variables (x,y)
xy[fO 1

Look at NOR and NAND: 1 >

+ Theorem: Any Boolean function that can be expressed as a truth table can be expressed using
NAND and NOR.

= Proof sketch: —1 »=NOT | »{> =AND
) o =OR

= How would you show that either NAND or NOR is sufficient? 8

Relationship Among Representations

unique
not
unique
r[rch?lyelﬁl;m for [close to
pulation] mmplementaton]

* Theorem: Any Boolean function that can be expressed as a truth table can be written
as an expression in Boolean Algebra using AND, OR, NOT.

CL Block Example - 4 Bit Adder - where decomposition helps

e Truth Table Representation:

ajazaladb3bZzblbo|r3rzrlr0c
4 4 00O 0O0OO0OT 0OT O D0 000020
A+~ +¢-R o0 000001 o000 10
add 00D0O0OO0DODT11TO0|00 1000
B , c o o0o0o0o0oD0 11 oo 1 10
4 oo 000100 01 0 020
R=A+B,
c is carry out
oo 10001 01 0 0@0
oo 100=0 11 01 0 10
ooo1 1111 oo 001

256 rows!
In general: 27 rows for n inputs.

Is there a more efficient (compact) way to specify this function?
O

4-bit Adder Example

---..

Q Motivate the adder circuit design by hand addition: a3 a2 al: ad
+ b3 bZ b1 bo
a3 az al a0! c r3 re r1-rD
+ b3 b2 bl'bD- T
* Adda’ and b1 as follows:
C r3 rz rl' rD .
ik ci a b r Co
Q Add a0 and b0 as follows: 0O 00| D0 O
o 01 1 0
ab|rC = carytonext 0 1 0|1 0
00|00D stage o 11 0o 1
o110 1 0 0D 1 O
10110 1 0 1 0o 1
T1]01 1 1 0|0 1
1 1 1 1 1

r=aXORb=a®b
c=aAND b =ab r=a®bdc,
co=ab+ac,.+bc,.

4-bit Adder Example o

Q In general: | l
r=a®b ®c_ i
=agc, +ab; +bc, =c.(a+b)+ab, l 1

Cout

cOo r

2 Now, the 4-bit adder: Full adder cell

a3 b3 az be al bi al b0

3 2 1 0

“ripple” adder

S

Full-adder (FA) cell example

* Alternative Implementation [with
only 2-input gates]:
r=(a@eb)®c,

Cout = Cin[ai + bl] + aibi

Q Graphical Representation of FA-cell
r=aebeoec,

Cout = AC, t @b, + b,

Cin Cin
Da :)
g — Cout L_\ | Cout
D_ /
CE: :D—I\ﬁD— Cout

. ba r
Cm—,)>

Boolean Algebra

~ mh“'luﬁof.’." — — " >
o e R O 4

e ﬂ'.‘ﬂtr..‘ﬂrvl

e g

Boolean Algebra

Set of elements B, binary operators {+,°} unary

operation {'} such that the following axioms hold :

1. B contains at least two elements @, b such that a = b.
2.Closure:a,bin B,

a+bin B? .a°binB, a'in B. B={0,1},+=0R,*=AND, '=NOT
3. Communitive laws : is a valid Boolean Algebra.

0 1 o

a+b=b+a, a*b=>bea.
4. Identities:0,1in B

00]0 00|0 011

a+0=a, a*l=a. 01(1 01(0 1|0
.o . 10|11 10{0
5. Distributive laws : 1111 1111

a+(bec)=(a+b)*(a+c), a*(b+c)=a*b+a-°c.
6. Complement :
at+a =1, a*a =0.
15
O

Some Laws (theorems) of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and
interchanging Os and 1s (the variables are left unchanged).

{F(xl,xz,...,xn,0,1,+,’)}D = {F(xl,xz,...,xn 91309.9+)}

Any law that is true for an expression is also true for its dual.

Operations with O and 1:

x+0=x X*1=x
x+1=1 x*0=0
|dempotent Law:
X+ X=X X X=X
Involution Law:
(x’)" = x
Laws of Complementarity:
x+x'=1 x x’=0

Commutative Law:

X+y=y+x Xy=yX a

Some Laws (theorems) of Boolean Algebra (cont.)

Associative Laws:
(x+y)+z=x+(y+2) xyz=x(yz)

Distributive Laws:

x(y+2z)=(xy)+(x2) x+(y z)=(x+y)x +2)
“Simplification” Theorems:
|xy+xy’=x (x+y)(x+y’)=x
X+Xy=X X (x+y)=x
xX+xy=x+ty X(x’ +y) = xy

DeMorgan’s Law:
(x+y+z+..)=xy?Z (xyz..)=x+y +2’

Theorem for Multiplying and Factoring:
x+y)(xX+z)=xz+Xxy
Consensus Theorem:
Xy+tyz+xz=(x+y)(y+2z) (X +2)
xXy+xz=(x+y) (X +2)

DeMorgan’s Law

Ve 1t Exhaustive X Y XY |(x+y) Xy
(X+y) =X y Proof
0011 1 1
0110 0O O
D —) 1001 0 O
- 17100 0O O
y | &y) x+y

(X y) '=x'+ y' Exhaustive

Proof

1 =73

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written
as an expression in Boolean Algebra using AND, OR, NOT.

go;nmye&n;ctrilt for [close to
pulation] implementaton]

How do we convert from one to the other?

19

Canonical Forms

A Standard form for a Boolean expression - unique algebraic expression directly from a
true table (TT) description.

2 Two Types:

* Sum of Products (SOP)
* Product of Sums (POS)

e Sum of Products (disjunctive normal form, minterm expansion). Example:

Mintexms a b c |f £' (Ong product (and) term for each 1 in f:
a'b'c 00001 f =a'bc + ab'c’' + ab'c + abc' + abc
a'b'c co1/01 f'=a'b'c’ + a'b'c + a'be’

a’'bce’ 010(01

a’be 011110 (enumerate all the ways the

ab’c 100]10 function could evaluate to 1)

ab’c 1 01|10

abc’ 110(10]

— T What is the cost?

20

Sum of Products (cont.)

Canonical Forms are usually not minimal:
Our Example:

f = a'bc + ab'c' + ab'c + abe' +abec [xy’ + xy = x]
= a'bec + ab' + ab [xy’ + xy = x]
= a'bc + a [x'y + x =y + x]
= a + bc

£' a'b'ec' + a'b'c + a’be’ [xy’ + xy = x]

= a'b' + a’bc’ [x(y + z) = xy + xz]

= a' (b' + bc') [x + X'y = x + y]

=a' (b'" + c') [x(y + z) = xy + xz]

= a'b' + a'c'

Canonical Forms

* Product of Sums [conjunctive normal form, maxterm expansion). Example:

maxterms
a+b+c
a+b+c’
a+b’ +c
a+b’ +c'
a’+b+c
a’ +b+c’
a’+b'+c
a’+b’ +c'

-

)P R R BR OOOO|p
)R OOHRKRHRKEL O O|p
B O R OKF ORF O|n

H R H KRR OO O|m
©O OO0 OO KR R Rk

f =

f!

One sum (or) term for each 0 in f:

(a+b+c) (a+b+c') (a+b'+c)
= (a+b'+c') (a'+b+c) (a'+b+c')
(a'+b'+c) (a+b+c')

(enumerate all the ways the
function could evaluate to 0)

What is the cost?

22

lification

imp

Boolean S

= mh“'lu.'t?.’." — & >
oy e e R O

e ﬂ'..’ﬂtr.ﬂlﬂrll

e g

Algebraic Simplification Example

Ex: full adder (FA) carry out function (in canonical form):
Cout =a’bc + ab’c + abc’ + abc

ci a b r co
0 00| 0 O
o o0 1 1 0
o 1 0 1 0
o 1 1 o 1
1 00 1 0
1 0 1 o 1
1 1 0 o 1
1 1 1 1 1

Algebraic Simplification

Cout =a’bc + ab’c + abc’ + abc
=a’bc + ab’c + abc’ + abc + abc
=a’bc + abc + ab’c + abc’ + abc
= (a’ + a)bc + ab’c + abc’ + abc
= (1)bc + ab’c + abc’ + abc
= bc + ab’c + abc’ + abc + abc
=bc + ab’c + abc + abc’ + abc
= bc + a(b’ +b)c + abc’ +abc
= bc + a(1)c + abc’ + abc
= bc + ac + ab(c’ + c)
=bc + ac + ab(1)
=pbc+ac+ab

Outline for remaining CL Topics

a K-map method of two-level logic simplification

d Multi-level Logic
2 NAND/NOR networks
aQ EXOR revisited

Algorithmic Two-level Logic Simplification
Key tool: The Uniting Theorem:
Xy’ +xy=x(y' +y)=x(1) = x

ab| f
00| 0 f=ab’+ab=a(b+b)=a
010 L
10! 1 b values change within the on-set rows
- ’,

11l 1 a values don’t change

b is eliminated, a remains
ab g J| J J J J J
001 1 g = ab+ab’= (a+a)b’ =b
ol1lo b values stay the same
10/1 —— avalues changes
1110 b’ remains, a is eliminated

27

Karnaugh Map Method

A K-map is an alternative method of representing the TT and to help

visual the adjacencies.
Note: “gray code” labeling.

a
o\ 0 1 ab /
cd N0001 1110

1 00

® 1
c 00011110

0 10

1

5 & 6 variable k-maps possible

Karnaugh Map Method

Q Adjacent groups of 1's represent product terms
a

b 0(1] °0 1
0/ 0 b
1104 0dD
P 170]0
g=b
ab
ab
c \.0001 11 10 ¢ .00 01 11 10
0/0{0|A}o0 0/0]0 |71
110 | 1[o]o\ v
cout=ab+bc+ac f=a

K-map Simplification

1. Draw K-map of the appropriate number of variables (between 2 and 6)
2. Fill in map with function values from truth table.

3. Form groups of 1’s.
v Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
v Form as large as possible groups and as few groups as possible.
v Groups can overlap (this helps make larger groups)

v Remember K-map is periodical in all dimensions (groups can cross over edges of map
and continue on other side)

4. For each group write a product term.

» the term includes the “constant” variables (use the uncomplemented variable for a
constant 1 and complemented variable for constant 0)

5. Form Boolean expression as sum-of-products.

30

K-maps (cont.)

c \.0001 11 1
0D 001G
110[0(1] D
f=bc +ac
ab
od _0Q 01 11 10
00 0] 0]\ f=c+abd+bd
01| 0(1) 0|0
EIVIK (bigger groups are better)
1011 {3

Product-of-Sums K-map

1. Form groups of O’s instead of 1’s.

2. For each group write a sum term.

» the term includes the “constant” variables (use the uncomplemented variable for a
constant 0 and complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.

ab

od 00
00/ 1
0110
11/ 1
10[1

—_—

110

1
@
1
1

O

0
0
1
1

f=(b'+c+d)f@+c+d)b+c+d)

32

BCD incrementer example

Binary Coded Decimal

5 R

o + >

g ¥OE

<o S~
NTTOT-OT-0O-QOx-=Q " 1 1 1 1
SO0 1 1 1 1
XOOOT™T™"v=v=00OD 1 1 1 1 1 1
SO0 1 1 1 1o

TOT-TOr-OT-Or-O+-O+-O+-Ov
[Slelul ol elel ol elel b el s
lclujululal Lol ol e lelelal b o)
(Melalolojelolalnl b b Dl ok kel ol)

O~ ANM<IO O N0

BCD Incrementer Example

A Note one map for each output variable.

QA Function includes “don’t cares” (shown as “-” in the table).

» These correspond to places in the function where we don’t care
about its value, because we don’t expect some particular input
patterns.

= We are free to assign either 0 or 1 to each don’t care in the function,
as a means to increase group sizes.

Q In general, you might choose to write product-of-sums or sum-of-
products according to which one leads to a simpler expression.

34

BCD incrementer example

W X
ab ab
cd\ 000111100 S\ _00071 11 10|
00[0|0|-]1 00j0{1/-1]0 W=
01/0/0(-1]0 010(1,-1]0
1o[1]-]- 1[1]0]-]|- X =
10/0/0| -] - 10/0(1|-] -
y:
ab y ab z

0111100 o\ 00071 11 10,

11-10 01 0/-10
0| -|- 11 0|-]-
1 1

- - 10

01
"
10

00
00[0/0|-|0 00/ 1]1]-|1 z=
1
0
1

=00

Higher Dimensional K-maps

de o
00 ® 01 110 e\ o1 11 10
a=1 w=10 9
10 10
11
1 1
10 :
g, B0 0
00 01 11 10 =11
00 10
a=0§ M
1 J
1 00 01 11 10
10 =01 ©
10
1
9
001 1 10
=00 9
10
Rl
1

ion —

t

ICa
IC

if

imp
level Log

Boolean S
Multi-

B e, o ST
e ;‘M...mv..w”.mnmﬂﬂﬂrﬂu.muﬂ?

o e e M o

Multi-level Combinational Logic

Q Example: reduced sum-of-products form C]i_
x = adf + aef + bdf + bef + cdf + cef + g n
Q Implementation in 2-levels with gates: 4
cost: 1 7-input OR, 6 3-input AND m

=> ~50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

ik

Q Factored form:
x = (a+Db+c)(d + e)f + g
cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
=> ~20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

]

>
D

Q-+OQOTO

Footnote: NAND would be used in
place of all ANDs and ORs.

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay.
Sometimes a tradeoff between cost and delay.

Multi-level Combinational Logic

Another Example: F = abc + abd +a'c'd' + b'c'd’
b let x = ab y = c+d
c” £

b y X
d- ol -

Xy + x'y'

- y Incorporates fanout.

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics
Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review:
(a+b)=ab’ (ab) =a+b’
atb =(a@b" (ab) =(@ +Db"

Jo-=1 > 1 >r=3>
Jo-=1> 1> =3>

push bubbles or introduce in pairs or remove pairs: (x') =x

NAND-NAND & NOR-NOR Networks

A Mapping from AND/OR to NAND/NAND
a) b)

b J
ngi Vo
9 e
o
S Y

Multi-level Networks

Convert to NANDs:
F=a(b+cd)+Dbc

C_
gED—FD f
3 [

b_

L)
_

C

EXOR Function Implementations

Parity, addition mod 2

X@Yy=XYy+Xy X -
Xy Xor | Xnor y-
00 0 1 XE j j ;/'(:

B

y

01 1
10 1
11 0

R O O

L BN
Another approach: I jof
X

y if x=0 then y else y/

