

EECS 151/251A Spring 2024 Digital Design and Integrated Circuits

Instructor: John Wawrzynek

Lecture 6: Combinational Logic Representations

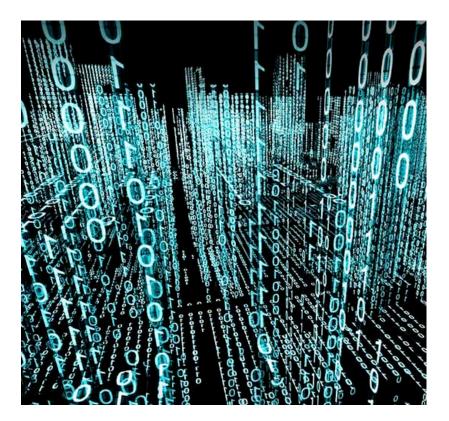
Announcements

□ PS 2 due tonight!

□ HW 3 posted, due in a week.

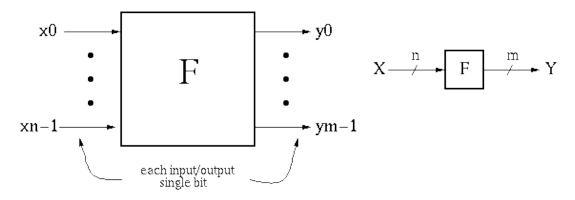
Outline

- Three representations for combinational logic:
 - truth tables,
 - graphical (logic gates), and
 - algebraic equations
- Boolean Algebra
- Boolean Simplification
- Description Multi-level Logic,
- □ NAND/NOR



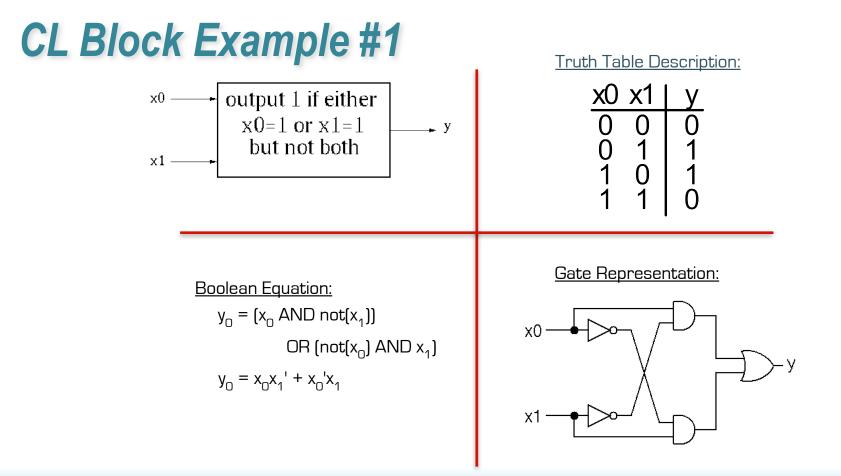
Representations of Combinational Logic

Combinational Logic (CL) Defined



 $y_i = f_i(x0, ..., xn-1)$, where x, y take on values {0,1}. Y is a function of only X, i.e., it is a "pure function".

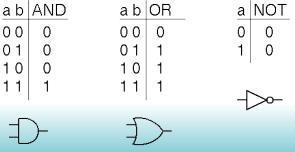
If we change X then Y will change immediately (well almost!).
 There is an *implementation dependent* delay from X to Y.
 Y is a function of nothing other than the current inputs values.



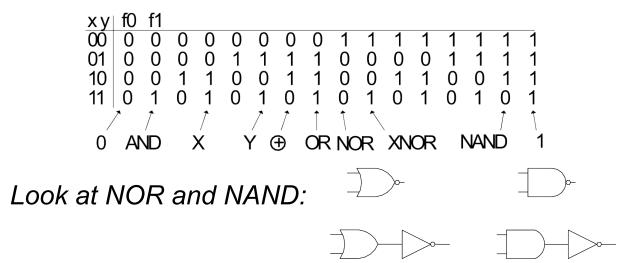
Boolean Algebra/Logic Circuits

- □ Why are they called "logic circuits"?
- □ Logic: The study of the principles of reasoning.
- The 19th Century Mathematician, George Boole, developed a math. system (algebra) involving logic, Boolean Algebra.
- □ His variables took on TRUE, FALSE
- Later Claude Shannon (father of information theory) showed (in his Master's thesis!) how to map Boolean Algebra to digital circuits:
- □ Primitive functions of Boolean Algebra:

Why was this novel/innovative?



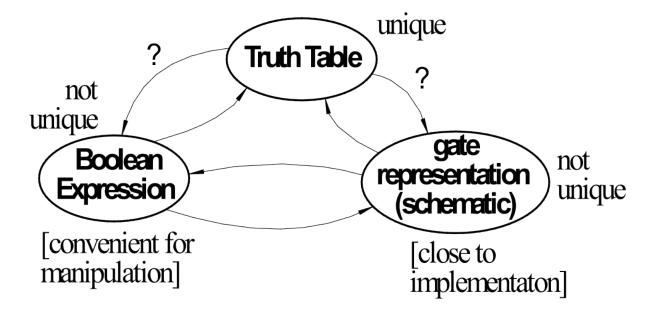
Other logic functions of 2 variables (x,y)



 Theorem: Any Boolean function that can be expressed as a truth table can be expressed using NAND and NOR.

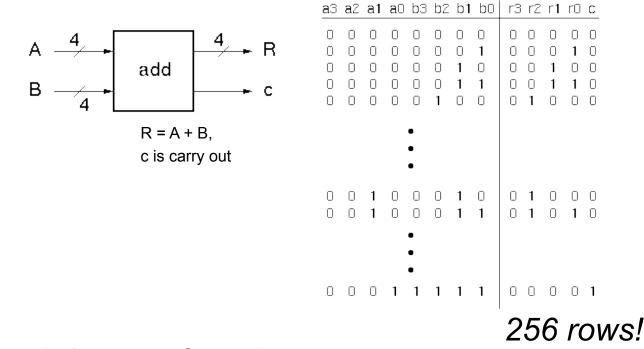
How would you show that either NAND or NOR is sufficient?

Relationship Among Representations



* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

CL Block Example – 4 Bit Adder - where decomposition helps

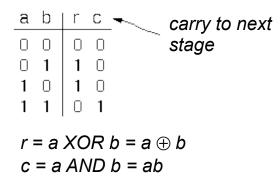


In general: 2ⁿ rows for n inputs. Is there a more efficient (compact) way to specify this function?

4-bit Adder Example

□ Motivate the adder circuit design by hand addition:

□ Add a0 and b0 as follows:

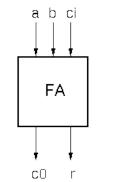


• Add a1 and b1 as follows:

ci	а	b	r	СО
)	0	0	0	0
)	0	1	1	0
)	1	0	1	0
)	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
$r = a \oplus b \oplus c_i$ co = ab + ac_i + bc_i				
))) 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

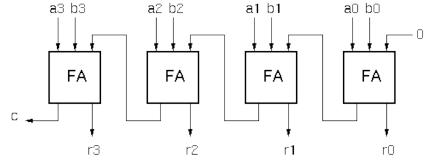
4-bit Adder Example

□ In general: $r_i = a_i \oplus b_i \oplus c_{in}$ $c_{out} = a_i c_{in} + a_i b_i + b_i c_{in} = c_{in} (a_i + b_i) + a_i b_i$



"Full adder cell"

□ Now, the 4-bit adder:



"ripple" adder

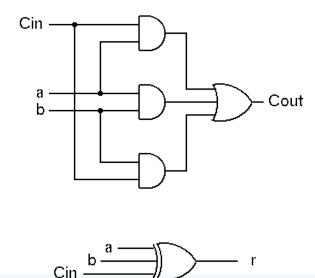
Full-adder (FA) cell example

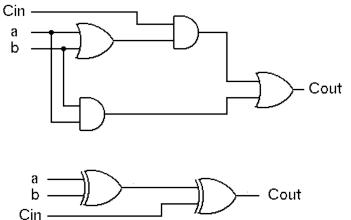
□ Graphical Representation of FA-cell

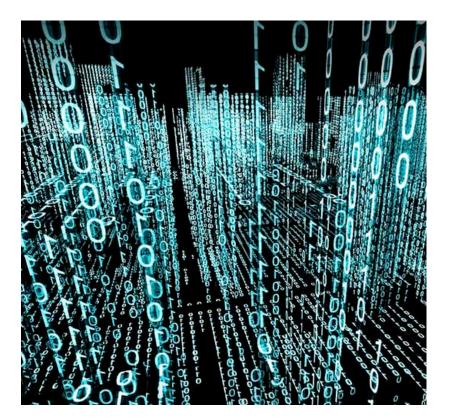
$$r_{i} = a_{i} \oplus b_{i} \oplus c_{in}$$
$$c_{out} = a_{i}c_{in} + a_{i}b_{i} + b_{i}c_{in}$$

• Alternative Implementation (with only 2-input gates):

$$r_{i} = [a_{i} \oplus b_{i}] \oplus c_{in}$$
$$c_{out} = c_{in}[a_{i} + b_{i}] + a_{i}b_{i}$$







Boolean Algebra

Boolean Algebra

Set of elements *B*, binary operators $\{+, \bullet\}$, unary operation $\{'\}$, such that the following axioms hold :

1. *B* contains at least two elements a, b such that $a \neq b$.

2. Closure : a, b in B,

a + b in B, $a \bullet b$ in B, a' in B.

3. Communitive laws :

$$a+b=b+a, a \bullet b=b \bullet a.$$

4. Identities : 0, 1 in B

$$a + 0 = a, \quad a \bullet 1 = a.$$

5. Distributive laws :

 $a + (b \bullet c) = (a + b) \bullet (a + c), \ a \bullet (b + c) = a \bullet b + a \bullet c.$

6. Complement :

$$a + a' = 1, \ a \bullet a' = 0.$$

Some Laws (theorems) of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and interchanging 0s and 1s (the variables are left unchanged).

 $\{F(x_1, x_2, ..., x_n, 0, 1, +, \bullet)\}^D = \{F(x_1, x_2, ..., x_n, 1, 0, \bullet, +)\}$

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1: x + 0 = x x * 1 = xx + 1 = 1 x * 0 = 0 Idempotent Law: x + x = x x = xInvolution Law: (x')' = xLaws of Complementarity: x + x' = 1 x + x' = 0Commutative Law: x + y = y + x x = y = x

Some Laws (theorems) of Boolean Algebra (cont.)

Associative Laws: (x + y) + z = x + (y + z)

x y z = x (y z)

Distributive Laws: x (y + z) = (x y) + (x z)

x + (y z) = (x + y)(x + z)

"Simplification" Theorems: x y + x y' = x $\mathbf{x} + \mathbf{x} \mathbf{y} = \mathbf{x}$ x + x'y = x + y

(x + y + z + ...)' = x'y'z'

(x + y) (x + y') = x $\mathbf{x} (\mathbf{x} + \mathbf{y}) = \mathbf{x}$ $\mathbf{x}(\mathbf{x}' + \mathbf{y}) = \mathbf{x}\mathbf{y}$

DeMorgan's Law:

(x y z ...)' = x' + y' + z'

Theorem for Multiplying and Factoring: (x + y) (x' + z) = x z + x' yConsensus Theorem: x y + y z + x' z = (x + y) (y + z) (x' + z)x v + x' z = (x + v) (x' + z)

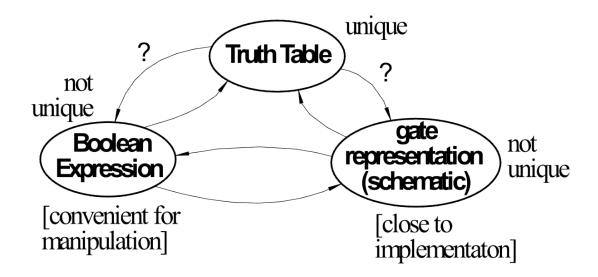
DeMorgan's Law

$(x \pm y)' = x'y'$	Exhaustive	x y x' y' (x+y)' x'y'			
(x + y)' = x' y' → = →	Proof	0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0	1 0 0 0	1 0 0 0	

(x y)' = x' + y'	Exhaustive	x y x' y' (x y)' x' + y'		
$(x y) - x \cdot y$	Proof	0011	1	1
		0110 1001	1	1
		1100	0	0

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.



How do we convert from one to the other?

Canonical Forms

- Standard form for a Boolean expression unique algebraic expression directly from a true table (TT) description.
- □ Two Types:
 - * Sum of Products (SOP)
 - * Product of Sums (POS)
 - <u>Sum of Products</u> (disjunctive normal form, <u>minterm</u> expansion). Example:

Minterms	а	b	С	f f'
a'b'c'	0	0	0	0 1
a'b'c	0	0	1	01
a'bc'	0	1	0	01
a'bc	0	1	1	1 0
ab'c'	1	0	0	1 0
ab'c	1	0	1	1 0
abc'	1	1	0	1 0
abc	1	1	1	10

One product (and) term for each 1 in f: f = a'bc + ab'c' + ab'c + abc' + abc f' = a'b'c' + a'b'c + a'bc'

(enumerate all the ways the function could evaluate to 1)

What is the cost?

Sum of Products (cont.)

Canonical Forms are usually not minimal:

Our Example:

f	= a'bc + ab'c'	+ ab'c + abc' +abc	[xy' + xy = x]
	= a'bc + ab' +	ab	[xy' + xy = x]
	= a'bc + a		$[\mathbf{x}'\mathbf{y} + \mathbf{x} = \mathbf{y} + \mathbf{x}]$
	= a + bc		

$$f' = a'b'c' + a'b'c + a'bc' [xy' + xy = x]$$

= a'b' + a'bc' [x(y + z) = xy + xz]
= a' (b' + bc') [x + x'y = x + y]
= a' (b' + c') [x(y + z) = xy + xz]
= a'b' + a'c'

Canonical Forms

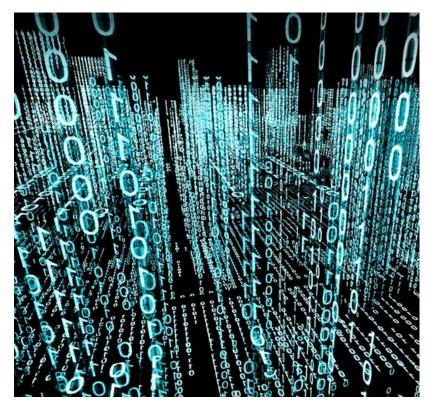
• <u>Product of Sums</u> (conjunctive normal form, <u>maxterm</u> expansion). <u>Example:</u>

maxterms	a	b	с	f	f'
a+b+c	0	0	0	0	1
a+b+c′	0	0	1	0	1
a+b′ +c	0	1	0	0	1
a+b′ +c '	0	1	1	1	0
a′+b+c	1	0	0	1	0
a'+b+c'	1	0	1	1	0
a′+b'+c	1	1	0	1	0
a'+b'+c'	1	1	1	1	0

One sum (or) term for each 0 in f:

(enumerate all the ways the function could evaluate to 0)

What is the cost?



Boolean Simplification

Algebraic Simplification Example

Ex: full adder (FA) carry out function (in canonical form): Cout = a'bc + ab'c + abc' + abc ci a b

сі	а	b	r	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Algebraic Simplification

Cout = a'bc + ab'c + abc' + abc

- = a'bc + ab'c + abc' + abc + abc
- = a'bc + abc + ab'c + abc' + abc
- = (a' + a)bc + ab'c + abc' + abc
- = [1]bc + ab'c + abc' + abc
- = bc + ab'c + abc' + abc + abc
- = bc + ab'c + abc + abc' + abc
- = bc + a(b' + b)c + abc' + abc
- = bc + a(1)c + abc' + abc
- = bc + ac + ab[c' + c]
- = bc + ac + ab[1]
- = bc + ac + ab

Outline for remaining CL Topics

- □ K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
- EXOR revisited

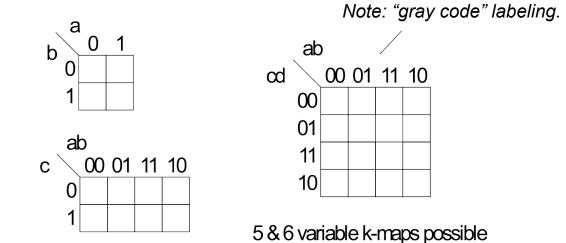
Algorithmic Two-level Logic Simplification

Key tool: <u>The Uniting Theorem:</u> xy' + xy = x(y' + y) = x(1) = xf ab 00 0 f = ab' + ab = a(b'+b) = a01 0 b values change within the on-set rows 10 a values don't change b is eliminated, a remains ab|g q = a'b' + ab' = (a' + a)b' = b'00 01 0 b values stay the same **1**0 a values changes

b' remains, a is eliminated

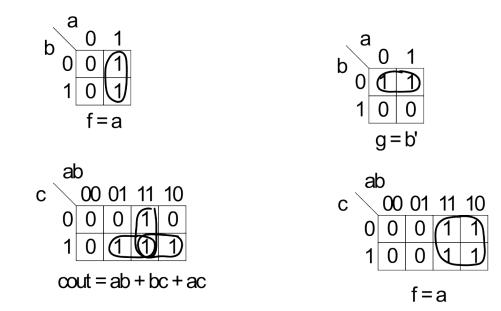
Karnaugh Map Method

K-map is an alternative method of representing the TT and to help visual the adjacencies.



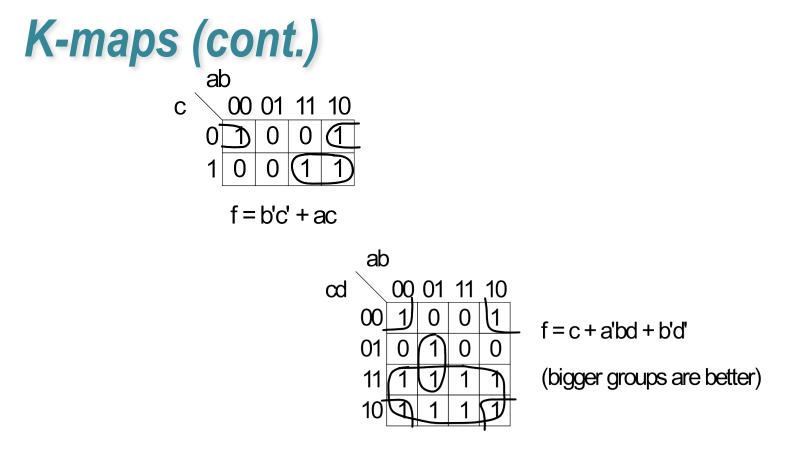
Karnaugh Map Method

Adjacent groups of 1's represent product terms



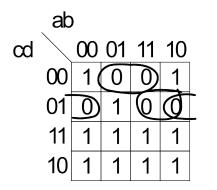
K-map Simplification

- 1. Draw K-map of the appropriate number of variables (between 2 and 6)
- 2. Fill in map with function values from truth table.
- 3. Form groups of 1's.
 - ✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - ✓ Form as large as possible groups and as few groups as possible.
 - ✓ Groups can overlap (this helps make larger groups)
 - ✓ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
- 4. For each group write a product term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)
- 5. Form Boolean expression as sum-of-products.



Product-of-Sums K-map

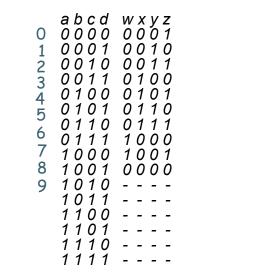
- 1. Form groups of 0's instead of 1's.
- 2. For each group write a sum term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
- 3. Form Boolean expression as product-of-sums.

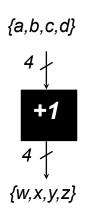


f = (b' + c + d)(a' + c + d')(b + c + d')

BCD incrementer example

Binary Coded Decimal





BCD Incrementer Example

□ Note one map for each output variable.

□ Function includes "don't cares" (shown as "-" in the table).

- These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
- We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-of-sums or sum-ofproducts according to which one leads to a simpler expression.

BCD incrementer example

V

00 01 1

0 0

1 | 1

0 0

1 | 1

ab

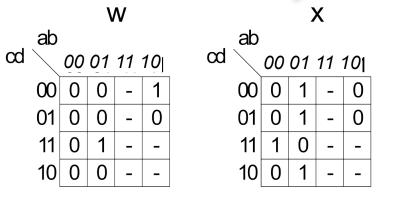
00

01

11

10

cd



Ζ

11 10

-

-

1

- 0

-

-

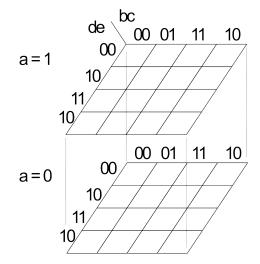
z =

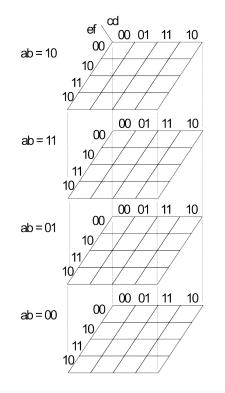
W =

x =

y =

Higher Dimensional K-maps





Boolean Simplification – Multi-level Logic

Multi-level Combinational Logic

- Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
- Implementation in 2-levels with gates: <u>cost:</u> 1 7-input OR, 6 3-input AND

=> ~50 transistors delay: 3-input OR gate delay + 7-input AND gate delay

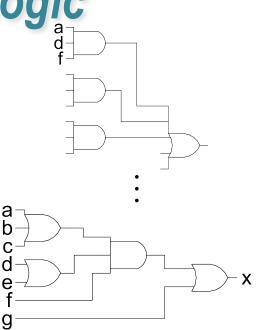
□ Factored form:

x = (a + b + c) (d + e) f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND

=> ~20 transistors

delay: 3-input OR + 3-input AND + 2-input OR

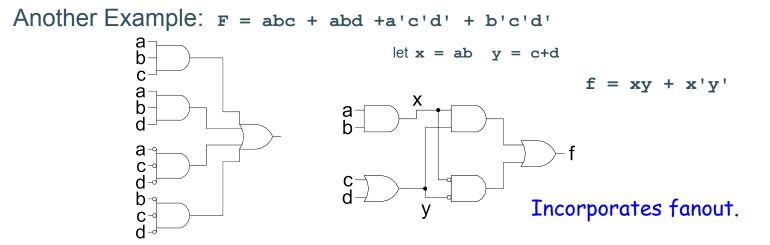


Footnote: NAND would be used in place of all ANDs and ORs.

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

Multi-level Combinational Logic



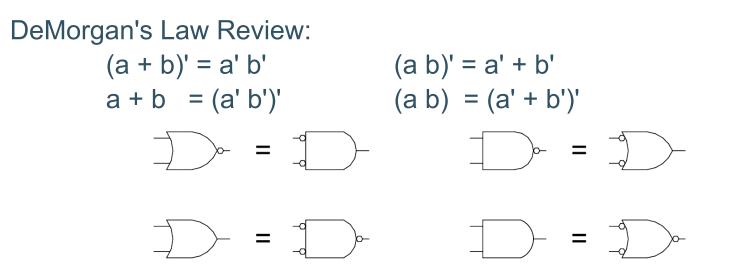
No convenient hand methods exist for multi-level logic simplification:

a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete

b) Humans and tools often exploit some special structure (example adder)

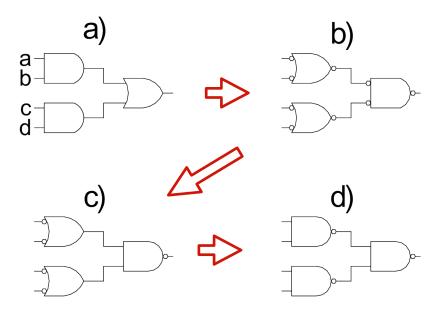
NAND-NAND & NOR-NOR Networks



push bubbles or introduce in pairs or remove pairs: (x')' = x

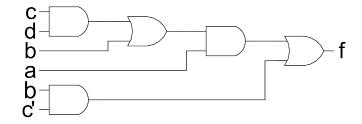
NAND-NAND & NOR-NOR Networks

□ Mapping from AND/OR to NAND/NAND



Multi-level Networks

Convert to NANDs: F = a(b + cd) + bc'

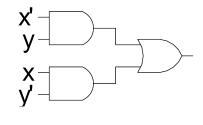


EXOR Function Implementations

Parity, addition mod 2

$x \oplus y = x'y + xy'$					
x	У	xor	xnor		
0	0	0	1		
0	1	1	0		
1	0	1	0		
1	1	0	1		

x y y



Another approach:

