

EECS 151/251A
Spring 2024
Digital Design and Integrated Circuits

Instructor:
John Wawrzynek

Lecture 7: Combinational Logic part 2, FSMs part 1

Announcements

- □ HW2 being graded.
- □ HW 3 posted due Monday.



Outline

Combinational Logic (continued):

- □ Boolean Simplification
- □ Multi-level Logic,
- □ NAND/NOR
- □ XOR

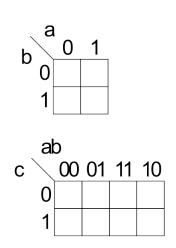
Finite State Machines:

Algorithmic Two-level Logic Simplification

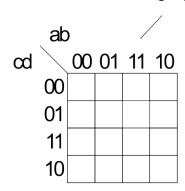
Key tool: The Uniting Theorem:

Karnaugh Map Method

□ K-map is a method of representing the TT and expose opportunities to apply the uniting theorem leading to simplification.



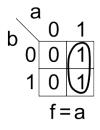
Note: "gray code" labeling.

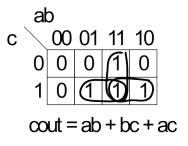


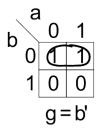
5 & 6 variable k-maps possible

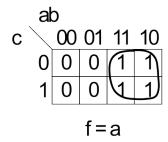
Karnaugh Map Method

□ Adjacent groups of 1's represent product terms









K-map Simplification

- 1. Draw K-map of the appropriate number of variables (between 2 and 6)
- 2. Fill in map with function values from truth table.
- 3. Form groups of 1's.
 - ✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - ✓ Form as large as possible groups and as few groups as possible.
 - √ Groups can overlap (this helps make larger groups)
 - ✓ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
- 4. For each group write a product term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)
- 5. Form Boolean expression as sum-of-products.

Product-of-Sums K-map

- 1. Form groups of 0's instead of 1's.
- 2. For each group write a sum term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
- 3. Form Boolean expression as product-of-sums.

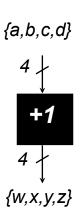
	ab				
α		00	01	11	10
	00	1((\bigcirc)	6	1
	01	6	1	0	0
	11	1	1	1	1
	10	1	1	1	1

$$f = (b' + c + d)(a' + c + d')(b + c + d')$$

BCD incrementer example

Binary Coded Decimal

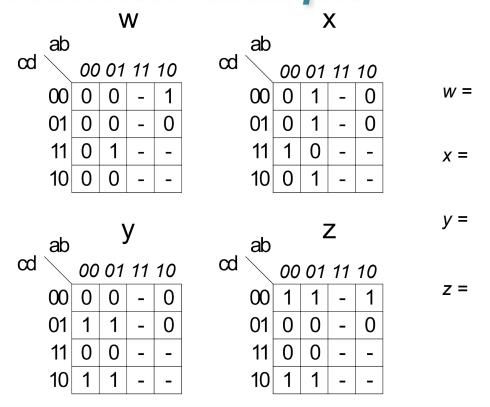
```
abcd wxyz
0 0000 0001
1 0001 0010
2 0010 0011
3 0011 0100
4 0100 0101
5 0101 0110
0111 1000
7 1000 1001
8 1001 0000
9 1010 - - - -
1101 - - - -
1110 - - - -
1111 - - -
```



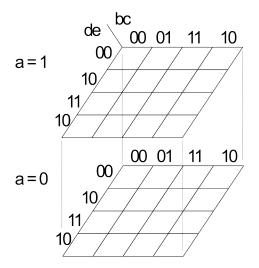
BCD Incrementer Example

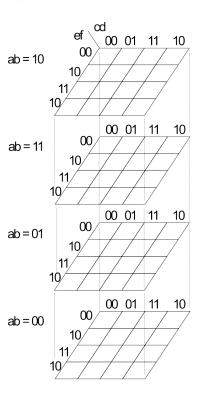
- □ Note one map for each output variable.
- □ Function includes "don't cares" (shown as "-" in the table).
 - These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
 - We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- □ In general, you might choose to write product-of-sums or sum-of-products according to which one leads to a simpler expression.

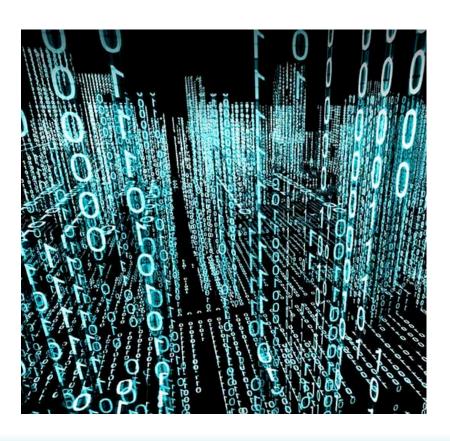
BCD incrementer example



Higher Dimensional K-maps







Boolean Simplification – Multi-level Logic

Multi-level Combinational Logic

□ Example: reduced sum-of-products form

$$x = adf + aef + bdf + bef + cdf + cef + g$$

□ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND

=> ~50 transistors

<u>delay:</u> 3-input AND gate delay + 7-input OR gate delay

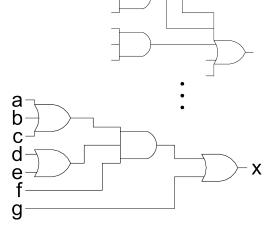
□ Factored form:

$$x = (a + b + c) (d + e) f + g$$

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND

=> ~20 transistors

<u>delay:</u> 3-input OR + 3-input AND + 2-input OR



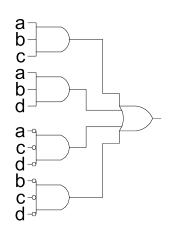
Footnote: NAND would be used in place of all ANDs and ORs.

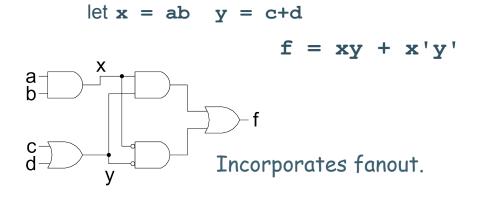
Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

Multi-level Combinational Logic

Another Example: F = abc + abd +a'c'd' + b'c'd'





No convenient hand methods exist for multi-level logic simplification:

- a) CAD tools use sophisticated algorithms and heuristics
 Guess what? These problems tend to be NP-complete
- b) Humans and tools often exploit some special structure (example adder)

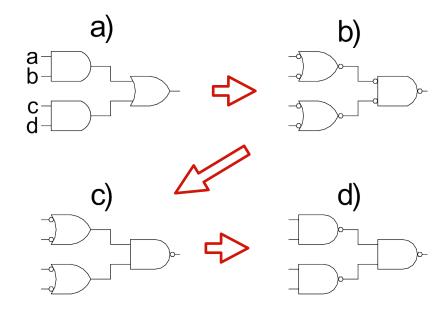
NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review:

push bubbles or introduce in pairs or remove pairs: (x')' = x.

NAND-NAND & NOR-NOR Networks

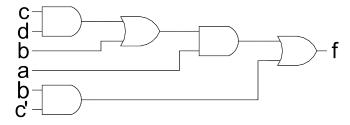
■ Mapping from AND/OR to NAND/NAND



Multi-level Networks

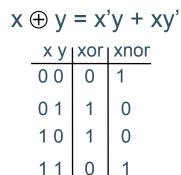
Convert to NANDs:

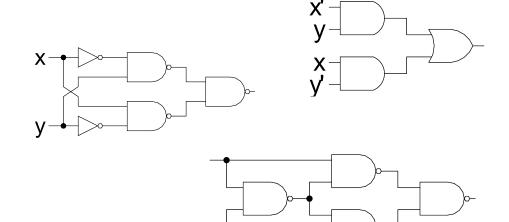
$$F = a(b + cd) + bc'$$



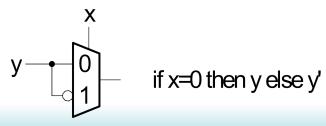
EXOR Function Implementations

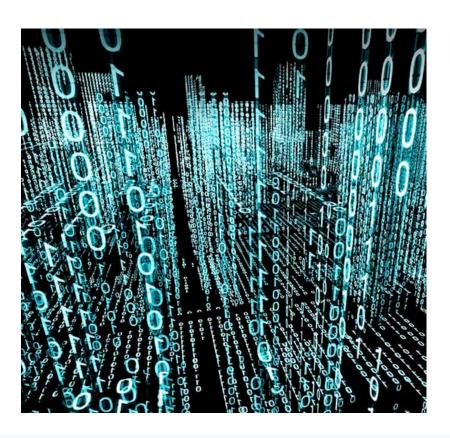
Parity, addition mod 2





Another approach:



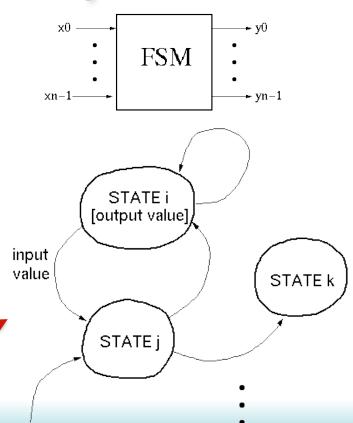


Finite State Machines

Finite State Machines (FSMs)

□ FSMs:

- Can model behavior of <u>any</u> <u>sequential circuit</u>
- Useful representation for designing sequential circuits
- As with all sequential circuits: output depends on present and past inputs
 - effect of past inputs represented by the current state
- □ Behavior is represented by *State Transition Diagram*:
 - traverse one edge per clock cycle.



FSM Implementation

- □ Flip-flops form *state register*
- number of states ≤ 2^{number} of flipflops
- CL (combinational logic) calculates next state and output
- Remember: The FSM follows exactly one edge per cycle.

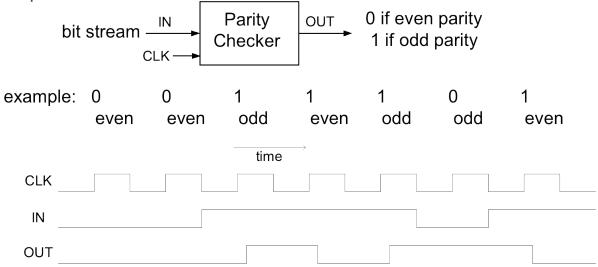
STATE i [output value] input value STATE k STATEj inputs → CL present state + / FFs - next state CL outputs

Later we will learn how to implement in Verilog. Now we learn how to design "by hand" to the gate level.

FSM Example: Parity Checker

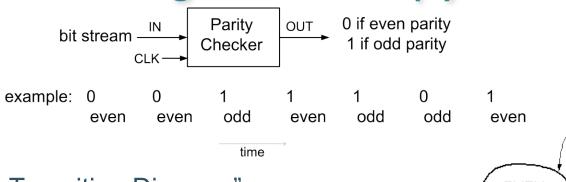
A string of bits has "even parity" if the number of 1's in the string is even.

Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 if the parity thus far is even and outputs a 1 if odd:



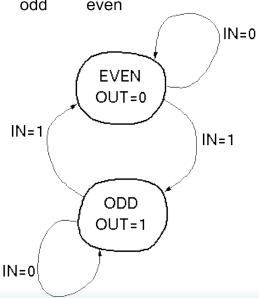
Next we take this example through the "formal design process". But first, can you guess a circuit that performs this function?

By-hand Design Process (a)



"State Transition Diagram"

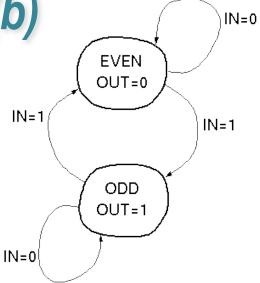
- circuit is in one of two "states".
- transition on each cycle with each new input, over exactly one arc (edge).
- Output depends on which state the circuit is in.



By-hand Design Process (b)

State Transition Table:

present state	OUT	IN	next state
EVEN	0	0	EVEN
EVEN	0	1	ODD
ODD	1	0	ODD
ODD	1	1	EVEN



Invent a code to represent states:

Let 0 = EVEN state, 1 = ODD state

present state (ps)	OUT	IN	next state (ns)
0	0	0	0
0	0	1	1
1	1	0	1
1	1	1	0

Derive logic equations from table (how?):

$$OUT = PS$$

 $NS = PS xor IN$

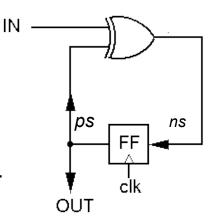
By-hand Design Process (c)

Logic equations from table:

OUT = PSNS = PS xor IN

□ Circuit Diagram:

- XOR gate for NS calculation
- Flip-Flop to hold present state
- no logic needed for output in this example.

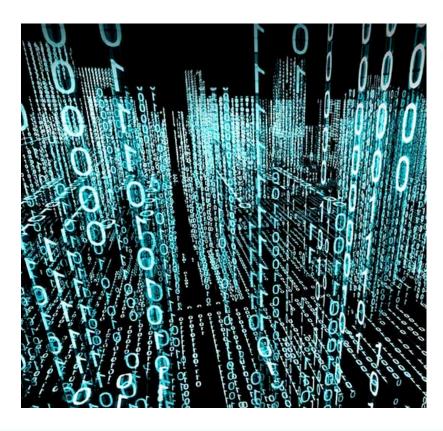


"Formal" By-hand Design Process

Review of Design Steps:

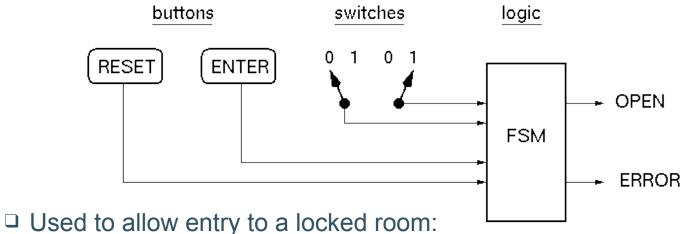
- 1. Specify circuit function (English)
- 2. Draw state transition diagram
- 3. Write down symbolic state transition table
- 4. Write down encoded state transition table
- 5. Derive logic equations
- 6. Derive circuit diagram

Register to hold state Combinational Logic for Next State and Outputs



Another FSM Design Example

Combination Lock Example



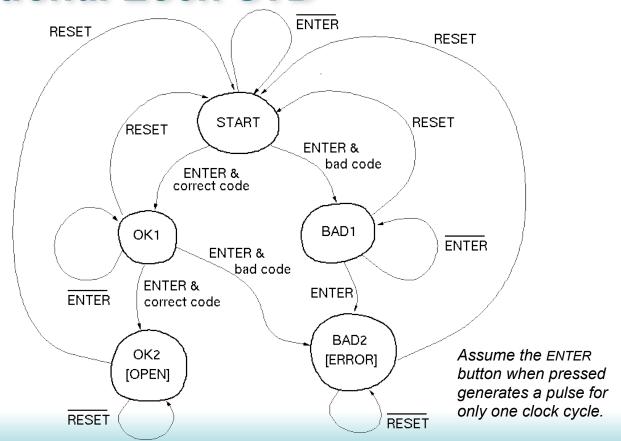
Used to allow entry to a locked room.

2-bit serial combination. Example 01,11:

- 1. Set switches to 01, press ENTER
- 2. Set switches to 11, press ENTER
- 3. OPEN is asserted (OPEN=1).

If wrong code, ERROR is asserted (after second combo word entry). Press Reset at anytime to try again.

Combinational Lock STD



Symbolic State Transition Table

RESET	ENTER	COM1	COM2	Preset State	Next State	OPEN	ERROR
0	0	*	*	START	START	0	0
0	1	0	*	START	BAD1	0	0
0	1	1	*	START	OK1	0	0
0	0	*	*	OK1	OK1	0	0
0	1	*	0	OK1	BAD2	0	0
0	1	*	1	OK1	OK2	0	0
0	*	*	*	OK2	OK2	1	0
0	0	*	*	BAD1	BAD1	0	0
0	1	*	*	BAD1	BAD2	0	0
0	*	*	*	BAD2	BAD2	0	1
1	*	*	*	*	START	0	0

^{*} represents "wild card" - expands to all combinations

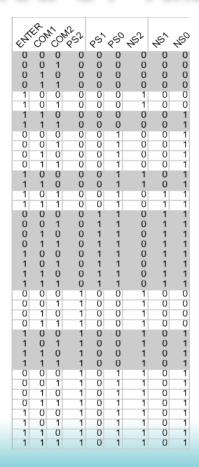
Decoder logic for checking combination (01,11):

left switch right switch

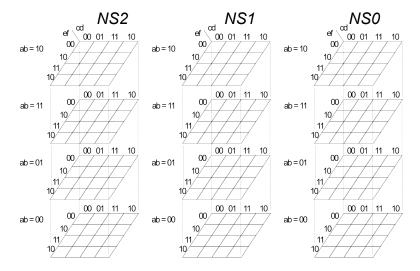
COM1

COM2

Encoded ST Table



- Assign states: START=000, OK1=001, OK2=011 BAD1=100, BAD2=101
- Omit reset. Assume that primitive flip-flops has reset input.
- Rows not shown have don't cares in output. Correspond to invalid PS values.



What are the output functions for OPEN and ERROR?