
EE141

EECS 151/251A
Spring 2024	
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 7:
Combinational Logic
part 2, FSMs part 1

Announcements
❑ HW2 being graded.
❑ HW 3 posted due Monday.

2

EE141

Outline
Combinational Logic
(continued):
❑ Boolean Simplification
❑ Multi-level Logic,
❑ NAND/NOR
❑ XOR

Finite State Machines:

4

Algorithmic Two-level Logic Simplification

ab f
00 0
01 0
10 1
11 1

ab g
00 1
01 0
10 1
11 0

Key tool: The Uniting Theorem:

xy’ + xy = x (y’ + y) = x (1) = x

f = ab’ + ab = a(b’+b) = a

g = a’b’+ab’ = (a’+a)b’ =b’

b values change within the on-set rows
a values don’t change
b is eliminated, a remains

b values stay the same
a values changes
b’ remains, a is eliminated

5

Karnaugh Map Method
❑ K-map is a method of representing the TT and expose

opportunities to apply the uniting theorem leading to simplification.

Note: “gray code” labeling.

6

Karnaugh Map Method
❑ Adjacent groups of 1’s represent product terms

7

K-map Simplification
1. Draw K-map of the appropriate number of variables (between 2

and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1’s.

✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, …, 2x2,
2x4, …)

✓ Form as large as possible groups and as few groups as possible.
✓ Groups can overlap (this helps make larger groups)
✓ Remember K-map is periodical in all dimensions (groups can cross over

edges of map and continue on other side)
4. For each group write a product term.

▪ the term includes the “constant” variables (use the uncomplemented variable
for a constant 1 and complemented variable for constant 0)

5. Form Boolean expression as sum-of-products.

8

Product-of-Sums K-map
1. Form groups of 0’s instead of 1’s.
2. For each group write a sum term.

▪ the term includes the “constant” variables (use the uncomplemented variable
for a constant 0 and complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.

9

BCD incrementer example
a b c d w x y z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 - - - -
1 0 1 1 - - - -
1 1 0 0 - - - -
1 1 0 1 - - - -
1 1 1 0 - - - -
1 1 1 1 - - - -

Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}

10

BCD Incrementer Example
❑ Note one map for each output variable.
❑ Function includes “don’t cares” (shown as “-” in the

table).
▪ These correspond to places in the function where we don’t

care about its value, because we don’t expect some
particular input patterns.

▪ We are free to assign either 0 or 1 to each don’t care in
the function, as a means to increase group sizes.

❑ In general, you might choose to write product-of-sums or
sum-of-products according to which one leads to a
simpler expression.

11

BCD incrementer example

w =

x =

y =

z =

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10

12

Higher Dimensional K-maps

EE141

Boolean Simplification –
Multi-level Logic

14

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => ~50 transistors
delay: 3-input AND gate delay + 7-input OR gate delay

Footnote: NAND would be used in
place of all ANDs and ORs.

❑ Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
 => ~20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Which is faster?
In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay.

Sometimes a tradeoff between cost and delay.

15

Multi-level Combinational Logic
Another Example: F = abc + abd +a'c'd' + b'c'd'
 let x = ab y = c+d
 f = xy + x'y'

No convenient hand methods exist for multi-level logic simplification:
a) CAD tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.

16

NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review:
 (a + b)' = a' b' (a b)' = a' + b'
 a + b = (a' b')' (a b) = (a' + b')'

push bubbles or introduce in pairs or remove pairs: (x')' = x.

17

NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND

18

Multi-level Networks
Convert to NANDs:
F = a(b + cd) + bc'

19

EXOR Function Implementations
Parity, addition mod 2
x ⊕ y = x’y + xy’
 x y xor xnor
 0 0 0 1

 0 1 1 0
 1 0 1 0

 1 1 0 1

Another approach:

EE141

Finite State Machines

Finite State Machines (FSMs)
❑ FSMs:

❑ Can model behavior of any
sequential circuit

❑ Useful representation for
designing sequential circuits

❑ As with all sequential circuits:
output depends on present and
past inputs

❑ effect of past inputs
represented by the current
state

❑ Behavior is represented by State
Transition Diagram:
▪ traverse one edge per clock cycle.

21

FSM Implementation
❑ Flip-flops form state register

❑ number of states ≤ 2number of flip-

flops
❑ CL (combinational logic) calculates

next state and output
❑ Remember: The FSM follows

exactly one edge per cycle.

Later we will learn how to implement in Verilog. Now we learn
how to design “by hand” to the gate level.

22

FSM Example: Parity Checker
A string of bits has “even parity” if the number of 1's in the string is even.
❑ Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 if the parity thus far

is even and outputs a 1 if odd:

Next we take this example through the “formal design process”. But first, can
you guess a circuit that performs this function?

23

By-hand Design Process (a)

“State Transition Diagram”
▪ circuit is in one of two “states”.
▪ transition on each cycle with each

new input, over exactly one arc
(edge).

▪ Output depends on which state
the circuit is in.

24

By-hand Design Process (b)
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations
from table (how?):

OUT = PS
NS = PS xor IN

25

By-hand Design Process (c)

❑ Circuit Diagram:

▪ XOR gate for NS calculation
▪ Flip-Flop to hold present state
▪ no logic needed for output in this example.

Logic equations from table:
OUT = PS
NS = PS xor IN

nsps

26

“Formal” By-hand Design Process
Review of Design Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Write down encoded state transition table
 5. Derive logic equations
 6. Derive circuit diagram
 Register to hold state
 Combinational Logic for Next State and Outputs

27

EE141

Another FSM Design Example

Combination Lock Example

❑ Used to allow entry to a locked room:
2-bit serial combination. Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).
 If wrong code, ERROR is asserted (after second combo word entry).
 Press Reset at anytime to try again.

29

Combinational Lock STD

Assume the ENTER
button when pressed
generates a pulse for
only one clock cycle.

30

Symbolic State Transition Table
RESET ENTER COM1 COM2 Preset State Next State OPEN ERROR
0 0 * * START START 0 0
0 1 0 * START BAD1 0 0
0 1 1 * START OK1 0 0
0 0 * * OK1 OK1 0 0
0 1 * 0 OK1 BAD2 0 0
0 1 * 1 OK1 OK2 0 0
0 * * * OK2 OK2 1 0
0 0 * * BAD1 BAD1 0 0
0 1 * * BAD1 BAD2 0 0
0 * * * BAD2 BAD2 0 1
1 * * * * START 0 0

Decoder logic for checking
combination (01,11):

31

* represents “wild card” - expands to all combinations

Encoded ST Table • Assign states:
START=000, OK1=001, OK2=011
BAD1=100, BAD2=101
• Omit reset. Assume that primitive flip-flops has reset input.
• Rows not shown have don't cares in output. Correspond to

invalid PS values.

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

32

