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Announcements
❑ HW2 being graded. 
❑ HW 3 posted due Monday.
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Outline
Combinational Logic 
(continued): 
❑ Boolean Simplification 
❑ Multi-level Logic,  
❑ NAND/NOR 
❑ XOR 

Finite State Machines: 
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Algorithmic Two-level Logic Simplification

ab f
00 0
01 0
10 1
11 1

ab g
00 1
01 0
10 1
11 0

Key tool: The Uniting Theorem:

xy’ + xy = x (y’ + y) = x (1) = x

f = ab’ + ab = a(b’+b) = a

g = a’b’+ab’ = (a’+a)b’ =b’

b values change within the on-set rows
a values don’t change
b is eliminated, a remains

b values stay the same
a values changes
b’ remains, a is eliminated
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Karnaugh Map Method
❑ K-map is a method of representing the TT and expose 

opportunities to apply the uniting theorem leading to simplification.

Note: “gray code” labeling.
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Karnaugh Map Method
❑ Adjacent groups of 1’s represent product terms 
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K-map Simplification
1. Draw K-map of the appropriate number of variables (between 2 

and 6) 
2. Fill in map with function values from truth table. 
3. Form groups of 1’s. 

✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, …, 2x2, 
2x4, …) 

✓ Form as large as possible groups and as few groups as possible. 
✓ Groups can overlap (this helps make larger groups) 
✓ Remember K-map is periodical in all dimensions (groups can cross over 

edges of map and continue on other side) 
4. For each group write a product term.  

▪ the term includes the “constant” variables (use the uncomplemented variable 
for a constant 1 and complemented variable for constant 0) 

5. Form Boolean expression as sum-of-products.
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Product-of-Sums K-map
1. Form groups of 0’s instead of 1’s. 
2. For each group write a sum term.  

▪ the term includes the “constant” variables (use the uncomplemented variable 
for a constant 0 and complemented variable for constant 1) 

3. Form Boolean expression as product-of-sums.
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BCD incrementer example
a b c d   w x y z 
0 0 0 0   0 0 0 1 
0 0 0 1   0 0 1 0 
0 0 1 0   0 0 1 1 
0 0 1 1   0 1 0 0 
0 1 0 0   0 1 0 1 
0 1 0 1   0 1 1 0 
0 1 1 0   0 1 1 1 
0 1 1 1   1 0 0 0 
1 0 0 0   1 0 0 1 
1 0 0 1   0 0 0 0 
1 0 1 0   -  -  -  - 
1 0 1 1   -  -  -  - 
1 1 0 0   -  -  -  - 
1 1 0 1   -  -  -  - 
1 1 1 0   -  -  -  - 
1 1 1 1   -  -  -  -

Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}



10

BCD Incrementer Example
❑ Note one map for each output variable. 
❑ Function includes “don’t cares” (shown as “-” in the 

table). 
▪ These correspond to places in the function where we don’t 

care about its value, because we don’t expect some 
particular input patterns. 

▪  We are free to assign either 0 or 1 to each don’t care in 
the function, as a means to increase group sizes. 

❑ In general, you might choose to write product-of-sums or 
sum-of-products according to which one leads to a 
simpler expression.
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BCD incrementer example

w =   

x = 

y =  

z = 

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10
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Higher Dimensional K-maps
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Boolean Simplification – 
Multi-level Logic
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Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => ~50 transistors 
delay: 3-input AND gate delay + 7-input OR gate delay

Footnote: NAND would be used in 
place of all ANDs and ORs.

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => ~20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR 

Which is faster? 
In general: Using multiple levels (more than 2) will reduce the cost.  Sometimes also delay. 

Sometimes a tradeoff between cost and delay.
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Multi-level Combinational Logic
Another Example:  F = abc + abd +a'c'd' + b'c'd'   
     let x = ab  y = c+d 
       f = xy + x'y' 

No convenient hand methods exist for multi-level logic simplification: 
a) CAD tools use sophisticated algorithms and heuristics 

Guess what?  These problems tend to be NP-complete 
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.
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NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review: 
  (a + b)' = a' b'        (a b)' = a' + b' 
   a + b   = (a' b')'      (a b)  = (a' + b')' 

push bubbles or introduce in pairs or remove pairs:         (x')' = x.
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NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND
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Multi-level Networks
Convert to NANDs: 
F = a(b + cd) + bc'
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EXOR Function Implementations
Parity, addition mod 2 
x ⊕ y = x’y + xy’ 
  x y  xor  xnor 
 0 0    0    1     

 0 1    1     0   
 1 0    1     0 

 1 1    0     1       

Another approach:
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Finite State Machines



Finite State Machines (FSMs)
❑ FSMs: 

❑ Can model behavior of any 
sequential circuit 

❑ Useful representation for 
designing sequential circuits 

❑ As with all sequential circuits: 
output depends on present and 
past inputs 

❑ effect of past inputs 
represented by the current 
state 

❑ Behavior is represented by State 
Transition Diagram: 
▪ traverse one edge per clock cycle.
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FSM Implementation
❑ Flip-flops form state register 

❑ number of states ≤ 2number of flip-

flops 
❑ CL (combinational logic) calculates 

next state and output 
❑ Remember:  The FSM follows 

exactly one edge per cycle.

Later we will learn how to implement in Verilog.  Now we learn 
how to design “by hand” to the gate level.
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FSM Example: Parity Checker
A string of bits has “even parity” if the number of 1's in the string is even. 
❑ Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 if the parity thus far 

is even and outputs a 1 if odd:

Next we take this example through the “formal design process”.  But first, can 
you guess a circuit that performs this function?
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By-hand Design Process (a)

“State Transition Diagram” 
▪ circuit is in one of two “states”. 
▪ transition on each cycle with each 

new input, over exactly one arc 
(edge). 

▪ Output depends on which state 
the circuit is in.
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By-hand Design Process (b)
State Transition Table: 

Invent a code to represent states: 
Let 0 = EVEN state, 1 = ODD state

present                   next 
state       OUT  IN   state 

 EVEN       0     0    EVEN 
 EVEN       0     1     ODD 
 ODD         1     0     ODD 
 ODD         1     1    EVEN

present state (ps)   OUT   IN   next state (ns) 
            0                    0      0                0 
            0                    0      1                1 
            1                    1      0                1 
            1                    1      1                0

Derive logic equations 
from table (how?): 

OUT = PS 
NS = PS xor IN
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By-hand Design Process (c)

❑ Circuit Diagram: 

▪ XOR gate for NS calculation 
▪ Flip-Flop to hold present state 
▪ no logic needed for output in this example.

Logic equations from table: 
OUT = PS 
NS = PS xor IN

nsps

26



“Formal” By-hand Design Process
Review of Design Steps: 

 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Write down encoded state transition table 
 5. Derive logic equations 
 6. Derive circuit diagram 
  Register to hold state 
  Combinational Logic for Next State and Outputs
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Another FSM Design Example



Combination Lock Example

❑ Used to allow entry to a locked room: 
2-bit serial combination.  Example 01,11: 
 1. Set switches to 01, press ENTER 
 2. Set switches to 11, press ENTER 
 3. OPEN is asserted (OPEN=1). 
  If wrong code, ERROR is asserted (after second combo word entry). 
  Press Reset at anytime to try again.
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Combinational Lock STD

Assume the ENTER 
button when pressed 
generates a pulse for 
only one clock cycle.
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Symbolic State Transition Table
RESET ENTER  COM1 COM2  Preset State  Next State  OPEN ERROR 
0            0          *   *       START       START        0     0 
0            1          0   *       START       BAD1          0     0 
0            1          1   *       START       OK1            0     0 
0            0          *   *       OK1           OK1            0     0 
0            1          *   0      OK1            BAD2          0     0 
0            1          *   1      OK1            OK2            0     0 
0            *          *   *       OK2           OK2            1     0 
0            0          *   *       BAD1         BAD1          0     0 
0            1          *   *       BAD1         BAD2          0     0 
0            *          *   *       BAD2         BAD2          0     1 
1            *          *   *       *            START        0     0

Decoder logic for checking 
combination (01,11):
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* represents “wild card” - expands to all combinations



Encoded ST Table • Assign states: 
START=000, OK1=001, OK2=011 
BAD1=100, BAD2=101 
• Omit reset.  Assume that primitive flip-flops has reset input. 
• Rows not shown have don't cares in output.  Correspond to 

invalid PS values. 

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0
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