
EE141

EECS 151/251A
Spring	2024	
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 8: Finite State
Machines

EE141

Finite State Machines

Finite State Machines (FSMs)
❑ FSMs:

❑ Can model behavior of any
sequential circuit

❑ Useful representation for
designing sequential circuits

❑ As with all sequential circuits:
output depends on present and
past inputs

❑ effect of past inputs
represented by the current
state

❑ Behavior is represented by State
Transition Diagram:
▪ traverse one edge per clock cycle.

3

FSM Implementation
❑ Flip-flops form state register

❑ number of states ≤ 2number of flip-

flops
❑ CL (combinational logic) calculates

next state and output
❑ Remember: The FSM follows

exactly one edge per cycle.

Later we will learn how to implement in Verilog. Now we learn
how to design “by hand” to the gate level.

4

FSM Example: Parity Checker
A string of bits has “even parity” if the number of 1's in the string is even.
❑ Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 if the parity thus far

is even and outputs a 1 if odd:

Next we take this example through the “formal design process”. But first, can
you guess a circuit that performs this function?

5

By-hand Design Process (a)

“State Transition Diagram”
▪ circuit is in one of two “states”.
▪ transition on each cycle with each

new input, over exactly one arc
(edge).

▪ Output depends on which state
the circuit is in.

6

By-hand Design Process (b)
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations
from table (how?):

OUT = PS
NS = PS xor IN

7

By-hand Design Process (c)

❑ Circuit Diagram:

▪ XOR gate for NS calculation
▪ Flip-Flop to hold present state
▪ no logic needed for output in this example.

Logic equations from table:
OUT = PS
NS = PS xor IN

nsps

8

“Formal” By-hand Design Process
Review of Design Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Write down encoded state transition table
 5. Derive logic equations
 6. Derive circuit diagram
 Register to hold state
 Combinational Logic for Next State and Outputs

9

EE141

Another FSM Design Example

Combination Lock Example

❑ Used to allow entry to a locked room:
2-bit serial combination. Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).
 If wrong code, ERROR is asserted (after second combo word entry).
 Press Reset at anytime to try again.

11

Combinational Lock STD

Assume the ENTER
button when pressed
generates a pulse for
only one clock cycle.

12

Symbolic State Transition Table
RESET ENTER COM1 COM2 Preset State Next State OPEN ERROR
0 0 * * START START 0 0
0 1 0 * START BAD1 0 0
0 1 1 * START OK1 0 0
0 0 * * OK1 OK1 0 0
0 1 * 0 OK1 BAD2 0 0
0 1 * 1 OK1 OK2 0 0
0 * * * OK2 OK2 1 0
0 0 * * BAD1 BAD1 0 0
0 1 * * BAD1 BAD2 0 0
0 * * * BAD2 BAD2 0 1
1 * * * * START 0 0

Decoder logic for checking
combination (01,11):

13

* represents “wild card” - expands to all combinations

Encoded ST Table • Assign states:
START=000, OK1=001, OK2=011
BAD1=100, BAD2=101
• Omit reset. Assume that primitive flip-flops has reset input.
• Rows not shown have don't cares in output. Correspond to

invalid PS values.

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

14

EE141

Moore Versus Mealy Machines

FSM Implementation Notes
❑ All examples so far generate

output based only on the
present state, commonly
called a “Moore Machine”:

❑ If output functions include
both present state and input
then called a “Mealy
Machine”:

16

Finite State Machines
❑ Example: Edge Detector
 Bit are received one at a time (one per cycle),
 such as: 000111010 time

 Design a circuit that asserts
 its output for one cycle when
 the input bit stream changes
 from 0 to 1.

 We'll try two different solutions: Moore then Mealy.

IN

17

CLK

OUTFSM

State Transition Diagram Solution A - Moore

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

18

Solution A, circuit derivation
IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

19

Solution B - Mealy
Output depends not only on PS but also on input, IN

IN PS NS OUT
 0 0 0 0
 0 1 0 0
 1 0 1 1
 1 1 1 0

Let ZERO=0,
 ONE=1

NS = IN, OUT = IN PS'

What's the intuition about this solution?

20

Edge detector timing diagrams

• Solution A: both edges of output follow the clock
• Solution B: output rises with input rising edge and is asynchronous

wrt the clock, output fails synchronous with next clock edge

21

Moore

Mealy

Moore

Mealy

FSM Comparison
Moore Machine
❑ output function only of PS
❑ maybe more states
❑ synchronous outputs

▪ Input glitches not send at output
▪ one cycle “delay”
▪ full cycle of stable output

Mealy Machine
• output function of both PS & input
• maybe fewer states
• asynchronous outputs
– if input glitches, so does output
– output immediately available
– output may not be stable long enough to

be useful (below):

If output of Mealy FSM
goes through
combinational logic before
being registered, the CL
might delay the signal and
it could be missed by the
clock edge (or violate set-
up time requirement)

22

FSM Moore and Mealy Implementation Review
Moore Machine Mealy Machine

23

Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy style outputs.

Nothing wrong with this, but you need to be aware of the timing
differences between the two types.

2. The output timing behavior of the Moore machine can be achieved in a
Mealy machine by “registering” the Mealy output values:

24

State Assignment
❑ When FSM implemented with gate logic, number of gates will depend on

mapping between symbolic state names and binary encodings

25

❑ Ex: combination lock FSM
❑ 5 states, 3 bits
❑ my assignment START=000,

OK1=001, OK2=011, BAD1=100,
BAD2=101

❑ only one of 6720 3-bit
assignments

(5 states = 8 choices for first state, 7
for second, 6 for third, 5 for forth, 4
for last = 6720 different encodings)

State Assignment

26

s0

s1 s2

s3

s4

State Encoding
❑ In general:
 # of possible FSM states = 2# of Flip-flops

 Example:
 state1 = 01, state2 = 11, state3 = 10, state4 = 00

❑ However, sometimes more than log2(# of states) FFs are used, to
simplify logic at the cost of more FFs.

❑ Extreme example is one-hot state encoding.

27

State Encoding
❑ One-hot encoding of states.
❑ One FF per state.
❑ On a transition from state i to j, a 1 moves from FFi to FFi

❑ Why one-hot encoding?
▪ Simple design procedure.

– Circuit matches state transition diagram (example next page).
▪ Often can lead to simpler and faster “next state” and output logic.

❑ Why not do this?
▪ Can be costly in terms of Flip-flops for FSMs with large number of states.

❑ FPGAs are “Flip-flop rich”, therefore one-hot state machine encoding is often a good
approach.

28

FFi FFj

1 0 0 1

Si Sj

One-hot encoded FSM
❑ Even Parity Checker Circuit:

❑ In General:

Circuit generated through
direct inspection of the STD.

29

Think about moving a single
token from state to state.

• FFs must be initialized for correct
operation (only one 1)

One-hot encoded combination lock

30

EE141

FSMs in Verilog

General FSM Design Process with Verilog Implementation
Design Steps:
 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Assign encodings (bit patterns) to symbolic states
 5. Code as Verilog behavioral description
✓ Use parameters to represent encoded states.
✓ Use register instances for present-state plus CL logic for next-state and

outputs.
✓ Use case for CL block. Within each case section (state) assign all outputs

and next state value based on inputs. Note: For Moore style machine make
outputs dependent only on state not dependent on inputs.

32

Finite State Machines
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
localparam IDLE = 2'b00;
localparam S0 = 2'b01;
localparam S1 = 2’b10;

reg out;
reg [1:0] next_state;
wire [1:0] present_state;

// state register
REGISTER_R #(.N(2), .INIT(IDLE)) state
(.q(present_state), .d(next_state), .rst(rst));

Must use reset to force
to initial state. reset not always shown in STD

out not a register, but assigned in always block
Combinational logic
signals for transition.

Constants local to
this module.

An always block should be used for combination logic part
of FSM. Next state and output generation. 33

// Always block for combination logic portion
always @(present_state or in)
 case (present_state)
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;

 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
 endcase
endmodule

34

For each state define:

Each state becomes a
case clause.

Output value(s)
State transition

Use “default” to cover unassigned state. Usually
unconditionally transition to reset state.

Mealy or Moore?

Edge Detector Example
REGISTER_R #(.INIT(ZERO) state
(.q(ps), .d(ns), .rst(rst));

always @(ps in)
 case (ps)
 ZERO: if (in) begin
 out = 1’b1;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 ONE: if (in) begin
 out = 1’b0;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 default: begin
 out = 1’bx;
 ns =
default;
 end

REGISTER_R #(.N(2), .INIT(ZERO)) state
(.q(ps), .d(ns), .rst(rst));

always @(ps in)
 case (ps)
 ZERO: begin
 out = 1’b0;
 if (in) ns = CHANGE;
 else ns = ZERO;
 end
 CHANGE: begin
 out = 1’b1;
 if (in) ns = ONE;
 else ns = ZERO;
 end
 ONE: begin
 out = 1’b0;
 if (in) ns = ONE;
 else ns = ZERO;
 default: begin
 out = 1’bx;
 ns = default;
 end

Mealy Machine Moore Machine

35

FSM CL block (original)

36

always @(present_state or in)
 case (present_state)
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;

 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
 endcase
endmodule

The sequential
semantics of the
blocking assignment
allows variables to be
multiply assigned within
a single always block.

FSM CL block rewritten

always @*
 begin
 next_state = IDLE;
 out = 1’b0;
 case (state)
 IDLE : if (in == 1’b1) next_state = S0;
 S0 : if (in == 1’b1) next_state = S1;
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 end
 default: ;
 endcase
 end
Endmodule

* for sensitivity list

Normal values: used unless
specified below.

Within case only need to
specify exceptions to the
normal values.

Note: The use of “blocking assignments” allow signal
values to be “rewritten”, simplifying the specification.

