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Finite State Machines (FSMs)
❑ FSMs: 

❑ Can model behavior of any 
sequential circuit 

❑ Useful representation for 
designing sequential circuits 

❑ As with all sequential circuits: 
output depends on present and 
past inputs 

❑ effect of past inputs 
represented by the current 
state 

❑ Behavior is represented by State 
Transition Diagram: 
▪ traverse one edge per clock cycle.
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FSM Implementation
❑ Flip-flops form state register 

❑ number of states ≤ 2number of flip-

flops 
❑ CL (combinational logic) calculates 

next state and output 
❑ Remember:  The FSM follows 

exactly one edge per cycle.

Later we will learn how to implement in Verilog.  Now we learn 
how to design “by hand” to the gate level.
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FSM Example: Parity Checker
A string of bits has “even parity” if the number of 1's in the string is even. 
❑ Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 if the parity thus far 

is even and outputs a 1 if odd:

Next we take this example through the “formal design process”.  But first, can 
you guess a circuit that performs this function?
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By-hand Design Process (a)

“State Transition Diagram” 
▪ circuit is in one of two “states”. 
▪ transition on each cycle with each 

new input, over exactly one arc 
(edge). 

▪ Output depends on which state 
the circuit is in.

6



By-hand Design Process (b)
State Transition Table: 

Invent a code to represent states: 
Let 0 = EVEN state, 1 = ODD state

present                   next 
state       OUT  IN   state 

 EVEN       0     0    EVEN 
 EVEN       0     1     ODD 
 ODD         1     0     ODD 
 ODD         1     1    EVEN

present state (ps)   OUT   IN   next state (ns) 
            0                    0      0                0 
            0                    0      1                1 
            1                    1      0                1 
            1                    1      1                0

Derive logic equations 
from table (how?): 

OUT = PS 
NS = PS xor IN
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By-hand Design Process (c)

❑ Circuit Diagram: 

▪ XOR gate for NS calculation 
▪ Flip-Flop to hold present state 
▪ no logic needed for output in this example.

Logic equations from table: 
OUT = PS 
NS = PS xor IN

nsps
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“Formal” By-hand Design Process
Review of Design Steps: 

 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Write down encoded state transition table 
 5. Derive logic equations 
 6. Derive circuit diagram 
  Register to hold state 
  Combinational Logic for Next State and Outputs
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Combination Lock Example

❑ Used to allow entry to a locked room: 
2-bit serial combination.  Example 01,11: 
 1. Set switches to 01, press ENTER 
 2. Set switches to 11, press ENTER 
 3. OPEN is asserted (OPEN=1). 
  If wrong code, ERROR is asserted (after second combo word entry). 
  Press Reset at anytime to try again.
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Combinational Lock STD

Assume the ENTER 
button when pressed 
generates a pulse for 
only one clock cycle.
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Symbolic State Transition Table
RESET ENTER  COM1 COM2  Preset State  Next State  OPEN ERROR 
0            0          *   *       START       START        0     0 
0            1          0   *       START       BAD1          0     0 
0            1          1   *       START       OK1            0     0 
0            0          *   *       OK1           OK1            0     0 
0            1          *   0      OK1            BAD2          0     0 
0            1          *   1      OK1            OK2            0     0 
0            *          *   *       OK2           OK2            1     0 
0            0          *   *       BAD1         BAD1          0     0 
0            1          *   *       BAD1         BAD2          0     0 
0            *          *   *       BAD2         BAD2          0     1 
1            *          *   *       *            START        0     0

Decoder logic for checking 
combination (01,11):
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* represents “wild card” - expands to all combinations



Encoded ST Table • Assign states: 
START=000, OK1=001, OK2=011 
BAD1=100, BAD2=101 
• Omit reset.  Assume that primitive flip-flops has reset input. 
• Rows not shown have don't cares in output.  Correspond to 

invalid PS values. 

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0
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FSM Implementation Notes
❑ All examples so far generate 

output based only on the 
present state, commonly 
called a “Moore Machine”: 

❑ If output functions include 
both present state and input 
then called a “Mealy 
Machine”:
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Finite State Machines
❑ Example: Edge Detector 
  Bit are received one at a time (one per cycle),  
  such as:   000111010       time 

   
  Design a circuit that asserts 
  its output for one cycle when  
  the input bit stream changes 
  from 0 to 1.   
  
  We'll try two different solutions: Moore then Mealy.

IN
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State Transition Diagram Solution A - Moore

IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE
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Solution A, circuit derivation
IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE
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Solution B - Mealy
Output depends not only on PS but also on input, IN

IN   PS   NS   OUT 
 0     0      0       0 
 0     1      0       0 
 1     0      1       1 
 1     1      1       0

Let ZERO=0, 
        ONE=1

NS = IN, OUT = IN PS'

What's the intuition about this solution?
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Edge detector timing diagrams

• Solution A: both edges of output follow the clock 
• Solution B: output rises with input rising edge and is asynchronous 

wrt the clock, output fails synchronous with next clock edge
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FSM Comparison
Moore Machine 
❑ output function only of PS 
❑ maybe more states 
❑ synchronous outputs 

▪ Input glitches not send at output 
▪ one cycle “delay” 
▪ full cycle of stable output

Mealy Machine 
• output function of both PS & input 
• maybe fewer states 
• asynchronous outputs 
– if input glitches, so does output 
– output immediately available 
– output may not be stable long enough to 

be useful (below):

If output of Mealy FSM 
goes through 
combinational logic before 
being registered, the CL 
might delay the signal and 
it could be missed by the 
clock edge (or violate set-
up time requirement) 
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FSM Moore and Mealy Implementation Review
Moore Machine Mealy Machine

23



Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy style outputs.  

Nothing wrong with this, but you need to be aware of the timing 
differences between the two types. 

2. The output timing behavior of the Moore machine can be achieved in a 
Mealy machine by “registering” the Mealy output values:

24



State Assignment
❑ When FSM implemented with gate logic, number of gates will depend on 

mapping between symbolic state names and binary encodings 
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❑ Ex: combination lock FSM 
❑ 5 states, 3 bits 
❑ my assignment START=000,                                     

OK1=001, OK2=011, BAD1=100, 
BAD2=101 

❑ only one of 6720 3-bit 
assignments 

(5 states = 8 choices for first state, 7 
for second, 6 for third, 5 for forth, 4 
for last = 6720 different encodings)



State Assignment
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State Encoding
❑ In general: 
     # of possible FSM states = 2# of Flip-flops 

  Example:  
   state1 = 01, state2 = 11, state3 = 10, state4 = 00 

❑ However, sometimes more than log2(# of states) FFs are used, to 
simplify logic at the cost of more FFs. 

❑ Extreme example is one-hot state encoding.
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State Encoding
❑ One-hot encoding of states. 
❑ One FF per state. 
❑ On a transition from state i to j, a 1 moves from FFi to FFi 

❑ Why one-hot encoding? 
▪ Simple design procedure. 

– Circuit matches state transition diagram (example next page). 
▪ Often can lead to simpler and faster “next state” and output logic. 

❑ Why not do this? 
▪ Can be costly in terms of Flip-flops for FSMs with large number of states. 

❑ FPGAs are “Flip-flop rich”, therefore one-hot state machine encoding is often a good 
approach.  
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One-hot encoded FSM
❑ Even Parity Checker Circuit: 

❑ In General:

Circuit generated through 
direct inspection of the STD.
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Think about moving a single 
token from state to state.

• FFs must be initialized for correct 
operation (only one 1)



One-hot encoded combination lock
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General FSM Design Process with Verilog Implementation
Design Steps: 
 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Assign encodings (bit patterns) to symbolic states 
 5. Code as Verilog behavioral description 
✓ Use parameters to represent encoded states. 
✓ Use register instances for present-state plus CL logic for next-state and 

outputs.  
✓ Use case for CL block.  Within each case section (state) assign all outputs 

and next state value based on inputs.   Note:  For Moore style machine make 
outputs dependent only on state not dependent on inputs.  

32



Finite State Machines
module FSM1(clk, rst, in, out); 
input clk, rst; 
input in; 
output out; 

// Defined state encoding: 
localparam IDLE = 2'b00; 
localparam S0 = 2'b01; 
localparam S1 = 2’b10; 

reg out; 
reg [1:0] next_state; 
wire [1:0] present_state; 

// state register 
REGISTER_R #(.N(2), .INIT(IDLE)) state 
(.q(present_state), .d(next_state), .rst(rst));

Must use reset to force 
to initial state. reset not always shown in STD

out not a register, but assigned in always block
Combinational logic 
signals for transition.

Constants local to 
this module.

An always block should be used for combination logic part 
of FSM.  Next state and output generation. 33



// Always block for combination logic portion 
always @(present_state or in)  
 case (present_state) 
  IDLE   : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S0; 
           else next_state = IDLE;   
         end 
  S0     : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 
         end 
  S1     : begin 
           out = 1’b1; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 

               end 
  default: begin 
      next_state = IDLE; 
      out = 1’b0; 
    end 
 endcase 
endmodule
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For each state define: 

Each state becomes a 
case clause.

Output value(s)
State transition

Use “default” to cover unassigned state.  Usually 
unconditionally transition to reset state.

Mealy or Moore?



Edge Detector Example
REGISTER_R #(.INIT(ZERO) state 
(.q(ps), .d(ns), .rst(rst)); 

always @(ps in) 
    case (ps) 
      ZERO: if (in) begin  
             out = 1’b1; 
             ns = ONE; 
           end 
    else begin 
      out = 1’b0; 
      ns = ZERO; 
    end 
      ONE: if (in) begin 
    out = 1’b0; 
    ns = ONE; 
   end 
   else begin 
     out = 1’b0; 
     ns = ZERO; 
   end 
      default: begin  
       out = 1’bx;  
       ns = 
default;  
      end

REGISTER_R #(.N(2), .INIT(ZERO)) state 
(.q(ps), .d(ns), .rst(rst)); 

always @(ps in) 
    case (ps) 
      ZERO: begin 
      out = 1’b0; 
      if (in) ns = CHANGE; 
                else ns = ZERO; 
    end 
      CHANGE: begin 
       out = 1’b1; 
       if (in) ns = ONE; 
       else ns = ZERO; 
      end 
         ONE: begin 
       out = 1’b0; 
       if (in) ns = ONE; 
       else ns = ZERO; 
      default: begin  
       out = 1’bx;  
       ns = default;  
      end

Mealy Machine Moore Machine
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FSM CL block (original)

36

always @(present_state or in)  
 case (present_state) 
  IDLE   : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S0; 
           else next_state = IDLE;   
         end 
  S0     : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 
         end 
  S1     : begin 
           out = 1’b1; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 

               end 
  default: begin 
      next_state = IDLE; 
      out = 1’b0; 
    end 
 endcase 
endmodule

The sequential 
semantics of the 
blocking assignment 
allows variables to be 
multiply assigned within 
a single always block. 



FSM CL block rewritten

always @* 
 begin  
  next_state = IDLE; 
  out = 1’b0;   
  case (state) 
   IDLE   : if (in == 1’b1) next_state = S0; 
   S0     : if (in == 1’b1) next_state = S1; 
   S1     : begin 
             out = 1’b1; 
             if (in == 1’b1) next_state = S1; 
            end 
   default: ;  
  endcase 
 end 
Endmodule 

* for sensitivity list

Normal values: used unless 
specified below.

Within case only need to 
specify exceptions to the 
normal values. 

Note: The use of “blocking assignments” allow signal 
values to be “rewritten”, simplifying the specification.


