Digital Design and Integrated Circuits

< o

10 S n

N N o)

- < .

o o 5 2 =

9 ‘e €= -
e o O

O .= == ©

Ep SO M

W »n £ X

- =
p = e
e

— TS

Finite State Machines

e M
o e e N

e ﬂ'.‘ﬂtr..‘ﬂrvl

T ——

Finite State Machines (FSMs)

4 FSMS i —."Yo
2 Can model behavior of any . | FSM
sequential circuit)

2 Useful representation for

designing sequential circuits
A As with all sequential circuits:
output depends on present and STATE |
past inputs
2 effect of past inputs input

represented by the current
State

2 Behavior is represented by State /

xn—-1—— —— yn-1

Transition Diagram:
= traverse one edge per clock cycle.

STATE O

[output value]

FSM Implementation

Q Flip-flops form state register input

value

Q number of states < 2number of flip-

flops
o _ (. inputs =
Q CL (combinational logic) calculates - . CL
next state and output
aQ Remember: The FSM follows
present state$—+— FFs next state

exactly one edge per cycle.

= (CL = outputs

Later we will learn how to implement in Verilog. Now we learn
how to design “by hand” to the gate level.

FSM Example: Parity Checker

A string of bits has “even patrity” if the number of 1's in the string is even.

Q Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 if the parity thus far
is even and outputs a 1 if odd:

Parity |out O if even parity

bit stream —~»| o0
It stream Checker 1 if odd parity
CLK —»

example: 0 0 1 1 1 0 1
even even odd even odd odd even
" time
ck_ | L7 L 7 [L7 L1 [
IN |
ouT I . L

Next we take this example through the “formal design process”. But first, can
you guess a circuit that performs this function?

By-hand Design Process (a)

Parity |out 0 if even parity

———

bit stream L

Checker 1 if odd parity
CLK—»
example: 0 0 1 1 1 0 1
even even odd even odd odd even
time IN=0
“State Transition Diagram” @
= circuit is in one of two “states”.
. . IN=1 _

= transition on each cycle with each al

new input, over exactly one arc

(edge). ODD
= QOutput depends on which state ouT=1

the circuit is in. IN=0

By-hand Design Process (b)

State Transition Table: @
present next

state | OUT|IN | state IN=1 IN=1
EVEN | 0 |0 |EVEN
EVEN | 0 |1 | ODD oDD
ODD 17 10| ODD OUT=1
ODD 1 |1 |EVEN
IN=0
Invent a code t_o represent sitates. Derive logic equations
Let 0 = EVEN state, 1 = ODD state f table (how?):
present state (ps) | OUT | IN |next state (ns) rom table (how?).
0 0 |0 0 ouT = PS
0 o |1 1 NS = PS xor IN
1 17 |0 1
1 1 |1 0

By-hand Design Process (c)

Logic equations from table:

OoUT =PS

NS = PS xor IN

Q Circuit Diagram: N Df
= XOR gate for NS calculation ‘ps .
= Flip-Flop to hold present state FF |t—
» no logic needed for output in this example. Y c’i;k

ouT

“Formal” By-hand Design Process

Review of Design Steps:

1. Specify circuit function (English)
2. Draw state transition diagram
3. Write down symbolic state transition table
4. Write down encoded state transition table
5. Derive logic equations
6. Derive circuit diagram
Register to hold state
Combinational Logic for Next State and Outputs

Example

ign

e

0 Another FSM Des

‘gl'z‘.ﬁhulﬁu.n.. E\M.Il)
TSI N e
e e o T AT
: - =

IIIII

.

Combination Lock Example

buttons switches logic

(reset| (enter] QT O]
‘ f—' | . OPEN

FSM

— ERROR

T ¥

d Used to allow entry to a locked room:
2-bit serial combination. Example 01,11
1. Set switches to 01, press ENTER
2. Set switches to 11, press ENTER

3. OPEN is asserted (OPEN=1).
If wrong code, ERROR is asserted (after second combo word entry).

Press Reset at anytime to try again.
11

Combinational Lock STD

ENTER

ENTER &

ENTER & bad code
correct code

ENTER &
correct code

Assume the ENTER
button when pressed
generates a pulse for
— only one clock cycle.

Symbolic State Transition Table

RESETIENTER | COM1 COM2| Preset State| Next State | OPEN ERROR

0 0 * * START START 0 0

0 1 0 * START BAD1 0 0

0 1 1 * START OK1 0 |0

0 0 * * OK1 OK1 0 |0

0 1 * 0 |OKf1 BAD?2 0 0

0 1 * 1 OK1 OK2 0 0 _ _

0 * * * OK?2 OK2 1 0 Decoder logic for checking

0 0 * * BAD1 BAD1 0 0 combination (01,11)

0 1 i i BAD1 BAD2 0 0 left switch right switch

0 * * * BAD?2 BAD?2 o 1

1 * * * * START 0 |0 | |) COM1
* represents “wild card” - expands to all combinations 3 -

13

Encoded ST Table

Assign states:
START=000, OK1=001, OK2=011

mm
Q2
58 &
()
%% e ° mf/jm o)
(. ” [« = = = = Dn
n R \ s 5 s s \d
mhaC Nmm 8 8 8 L
o S gl N g S
S S T e T e o]
-
= S S h 2 = <
4 O 8] 8)]
m.m o o o W
v 9 . - - g
.V (O] = = = o
..M.W 5 5 s <«
S o 8 8 8 7]
nﬂNum SRS 8% 87y w
—_ O s Tl s ..w
8o = 5 8 S
Mw m |) | %m
g3 o 5 o IS
1unS. = = = ..nlW
S v (0] - _ - S
T2 5 NNNNENNNE S
®
m .MV 8 8 8 .n_nU
A..alu...lS = % e =
Q v OQ oo e e)
s 9 S 5 2 8 3
SS 0l 8 8 8 -
- = 3@ ©
n g S <
~ o mW
o O X..&
<
B.. []
&W00000011111111111111111100001111 1111111 -

\&0000000000000011111111110000000000000000

& CO0OrrO00O00OrrO000000000rrrrEEE e r e r e ==
S
Q‘m; RERESIERIO © Rt v v v S v E————_—_——_C) O O O A= = = = = = = el
&

&W0000000000000000111111110000000000000000
hkg OO0 0DO0OO0O0D0D0O0 00000000000 000 rrrrrrrrrCC e e e e
&Q

\&0101010101010011010101010101010101010101

@@W0011001100110101001100110011001100110011

&60000111100001111000011110000111100001111

14

Ines

e

0 Moore Versus Mealy Mach

‘gl'z‘.ﬁhulﬁu.n.. E\M.Il)
TSI N e
e e o T AT
: - =

IIIII

.

FSM Implementation Notes

CL

-
present state$—+— FFs jnext state

w (CL [outputs

Q All examples so far generate
output based only on the
present state, commonly
called a “Moore Machine”:

L
ouT=0 inputs ——m —— outputs

CL

present state next state

Q If output functions include
both present state and input

then called a “Mealy oUT-1 =0
Machine”: e oo I
‘ IN=1
ouT=0

Finite State Machines

Q Example: Edge Detector
Bit are received one at a time (one per cycle),
such as: 000111010 time

CLK
Design a circuit that asserts IN %ﬁ% ouT

its output for one cycle when
the input bit stream changes
from O to 1.

>

We'll try two different solutions: Moore then Mealy.

State Transition Diagram Solution A - Moore

IN_PS | NS OUT

ZERO | 0O 00 | 00
00 | 01
01 | 00

CHANGE |

C A A OO

Solution A, circuit derivation

S
IN PS | NS OUT 00 01 11 10
0 0000 0 oloflolo]-]
ZERO | & 00 | 01 0 N o TaTq | Ns=INPS,
O 01 |00 1
CHANGE { 1 01|11 1 ps
0 11 {00 O 00 01 11 10
ONE {1 11 |11 O -
{ N 00100 NS,= IN
111111 -
NS,
} FF PS, PS
F _O} our 00 01 11 10
N © 8 :: g | ouT=Ps,PS,
N o) Fr PS, 1 -

Solution B - Mealy

Output depends not only on PS but also on input, IN

IN=0 IN PS NS OUT
= Let ZERO=0,

oUT=0 oney 0 0 0 0
@ HE
170 1 1
11 1 0

IN=1
ouT=1 IN=0 NS = IN, OUT = IN PS'

oUT=0

NS
((one Ll
IN=1
OuT=0 “ — OUT

What's the intuition about this solution?

NS

Edge detector timing diagrams Moore

N — FF —Ps,
CLK F 1 out
IN i N NSo! Fr PS,

OUT (solution A) Moore

OUT (solution B) Mealy

« Solution A: both edges of output follow the clock

« Solution B: output rises with input rising edge and is asynchronous
wrt the clock, output fails synchronous with next clock edge

21

FSM Comparison

Moore Machine
4 output function only of PS
J maybe more states

Q synchronous outputs
= |Input glitches not send at output
= one cycle “delay”
= full cycle of stable output

CLK

ouT |_

Mealy Machine

output function of both PS & input
maybe fewer states
asynchronous outputs

if input glitches, so does output

output immediately available

output may not be stable long enough to
be useful (below):

If output of Mealy FSM
goes through

OUT —™

being registered, the CL
might delay the signal and
it could be missed by the

combinational logic before
CL —vm

clock edge (or violate set-
up time requirement)

22

FSM Moore and Mealy Implementation Review

Moore Machine Mealy Machine
input value input value/output values
STATE
[output values]
inputs:
B . CL inputs —— |+ w outputs
@l
present state - hext state
present state$—+— FFs next state

FFs [——

» (CL = outputs

Final Notes on Moore versus Mealy

1. A given state machine could have both Moore and Mealy style outputs.

Nothing wrong with this, but you need to be aware of the timing
differences between the two types.

2. The output timing behavior of the Moore machine can be achieved in a
Mealy machine by “registering” the Mealy output values:

Mealy Machine

Output Register
next-state, cIkJ L
tput logi
output logic REG L oUTr

State Assignment

QA When FSM implemented with gate logic, number of gates will depend on
mapping between symbolic state names and binary encodings

Q Ex: combination lock FSM
Q 5 states, 3 bits

Q' my assignment START=000,
OK1=001, OK2=011, BAD1=100, S
BAD2=101 d

A only one of 6720 3-bit
assignments

(5 states = 8 choices for first state, 7
for second, 6 for third, 5 for forth, 4
for last = 6720 different encodings)

State Assignment

Pencil & Paper Heuristic Methods

State Maps: similar in concept to K-maps

If state X transitions to state Y, then assign "close" assignments

toXandY
Assignment
State Name| Q, Q, Q,
Sy 0O 0 O
S, 1 0 1
S, 1 1 1
S3 0 1 0
S, o 1 1
Assignment
@ Q1 Qg
QN 00 01 11 10
@ 01S, Sy S
1 S| <

State Map

State Name

Assignment
Q Q Q

Q,

Sy 0 O
0 O
S, 0 1
0 1
1 1
Assignment

Q1 Qo

00 01 11 10

0

1
0
1
1

0
\

1

So | Syl S5l S,

A\ A) "I’ v/

Sy

State Map

26

State Encoding oot o

CL
present state — ~next state
Q In general:
of possible FSM states = 2# of Flip- —{rs|
Example:

state1 = 01, state2 = 11, state3 = 10, state4 = 00
a However, sometimes more than log,(# of states) FFs are used, to
simplify logic at the cost of more FFs.
Q Extreme example is one-hot state encoding.

State Encoding Ex: 3 Sttes

9 One-hot encoding of states. gﬂg; 8‘1’3
Q One FF per state. STATE3: 100
32 On a transition from state i to j, a 1 moves from FF; to FFi /T\
FF1 ggo FF3
1—=0 0—=1

2 Why one-hot encoding?
= Simple design procedure.
— Circuit matches state transition diagram (example next page).
= Often can lead to simpler and faster “next state” and output logic.

4 Why not do this?
= Can be costly in terms of Flip-flops for FSMs with large number of states.
J FPGAs are “Flip-flop rich”, therefore one-hot state machine encoding is often a good

approach.
28

One-hot encoded FSM

Q Even Parity Checker Circuit:

Q In General:

state FF —]

Think about moving a single
token from state to state.

—— OUT

LgﬁD '
.

X
L

Input-—

|
~
ODD

—e

STATEI

Circuit generated through
direct inspection of the STD.

FFs must be initialized for correct
operation (only one 1)

— to other state FF logic and/or output

One-hot encoded combination lock

ENTER &
correct code

ENTER &
bad code

RST

RST
ENT

ENT
Comz

BaDZ

RST

COMz —
ENT

D— BAD1
COM1 ———q VAN
ENT ———
RST -G
START
AN
RST
RST
OK1
AN

)

R5T —C

oKz

ERROR

OPEN

7D

in Verilog

FSMs

ey <

B e e
S

~n =

General FSM Design Process with Verilog Implementation

Design Steps:
1. Specify circuit function (English)
2. Draw state transition diagram
3. Write down symbolic state transition table

4. Assign encodings (bit patterns) to symbolic states

5. Code as Verilog behavioral description
v Use parameters to represent encoded states.
v Use register instances for present-state plus CL logic for next-state and

outputs.
v Use case for CL block. Within each case section (state) assign all outputs
and next state value based on inputs. Note: For Moore style machine make

outputs dependent only on state not dependent on inputs.

32

Finite State Machines

module FSMI(clk, rst, in, out);

input clk, rst;
Must use reset to force

input in; =t
output out; to initial state. reset not always shown in STD

in=0

// Defined state encoding:
localparam IDLE = 2'b00; -
localparam SO0 = 2'b01;,
localparam S1 = 2’b10;

“-Constants local to
/,,this module.

reg out, - out not a register, but assigned in always block
reg [1:0] next state; - .. Combinational logic
wire [1:0] present state; signals for transition.

// state register
REGISTER R #(.N(2), .INIT(IDLE)) state
(.g(present_state), .d(next_state), .rst(rst));

An always block should be used for combination logic part
of FSM. Next state and output generation. 33

// Always block for combination logic portion
always (@ (present state or in)
case (present_state)

IDLE : begin
out = 1'b0;
if (in == 1bl) next state = SO;
else next state = IDLE;
end Each state becomes a
S0 : begin case clause.
out = 1b0;
if (in == 1bl) next state = SI1;
else next_state = IDLE;
end " For each state define:
S1 : begin S Output value(s)
out = 1b1;
if (in == 1bl) next state = §1; >tatefransition
else next state = IDLE;
end
default: begin
~ next state = IDLE;
‘out =1b0; - . ___Use “default’ to cover unassigned state. Usually
end unconditionally transition to reset state.
endcase
endmodule

Mealy or Moore? 34

Edge Detector Example

Mealy Machine

R.EGISTER_R #(.INIT (ZERO) state
(.g(ps), .d(ns), .rst(rst));

always @(ps in)

IN=0 case (ps)
oUT=0 ZERO: if (in) begin
out = 1bl;
@ ns = ONE;
end
else begin
IN=1 out = 1'b0;
ouT=1 IN=0 ns = ZERO;
ouT=0

end
@ ONE: if (in) begin
out = 1b0;
IN=1 ns = ONE;
OUT=0 end

else begin

out = 1'b0;
ns = ZERO;
end
default: begin
out = 1'bx;
ns =

default,
end

Moore Machine

REGISTER R #(.N(2), .INIT(ZERO)) state
(.g(ps), .d(ns), .rst(rst));

always @(ps in)
case (ps)
ZERO: begin
out = 1'b0;
if (in) ns = CHANGE;
else ns = ZERO;
end
CHANGE: begin
out = 1bl;
if (in) ns = ONE;
else ns = ZERO;
end
ONE: begin
out = 1'b0;
if (in) ns = ONE;
else ns = ZERO;
default: begin

out = 1bx,
ns = default,
end

FSM CL block (original)

always (@ (present state or in)
case (present_state)
IDLE : begin
out = 1b0;

if (in == 1bl) next state = SO;

else next state = IDLE;
end
S0 : begin
out = 1b0;

if (in == 1bl) next state = SI1;

else next state = IDLE;
end
S1 : begin
out = 1bl;

if (in == 1bl) next state = SI1;

else next state = IDLE;

end
default: begin
next state = IDLE;
out = 1b0;,
end
endcase
endmodule

The sequential
semantics of the
blocking assignment
allows variables to be
multiply assigned within
a single always block.

36

always @* * for sensitivity list
begin
next_state = IDLE; Normal values: used unless
out = 1'b0; . specified below.
case (state)
IDLE : if (in == 1bl) next state = S0;
S0 : if (in == 1bl) next state = S1; - Within case only need to
s1 : begin - specify exceptions to the
out = 1bl; normal values.
if (in == 1’bl) next_state = s1;
end
default: ;
endcase Note: The use of “blocking assignments” allow signal
end values to be “rewritten”, simplifying the specification.

Endmodule

