University of California at Berkeley
College of Engineering
Department of Electrical Engineering and Computer Sciences

EECS151/251A J. Wawrzynek
Spring 2020 3/12/20

Exam 1 Solutions

Name:

Student ID number:

Class (EECS151 or EECS251A):

You have two hours to take the exam. This exam comprises a set of questions with 1 point per
expected minute of completion with a total of approximately 90 points. You have two hours to
complete the exam. As with homework problems, submit your solutions using Gradescope. At
the end of the exam time, we will give you a few extra minutes for you to submit your answers.

You are allowed to refer to your notes, the class lecture notes, and any other reference materials
that you have available. You are not allowed to speak or communicate with anyone on any topic
related to the exam during the exam period. After completing the exam, sign the following
statement attesting that you did not discuss the exam problems with anyone else. You may
either scan this page or copy the statement word-for-word.

I hereby declare that I have not spoken with nor otherwise communicated with anybody
regarding the content of this exam while taking the exam:

(sign here):

For each problem if you find yourself taking excessive time to work out a solution consider
skipping the problem or a fresh approach. Also, start by answering the easier questions
and then move on to the more difficult ones.

Neatness counts. We will deduct points if we need to work hard to understand your
answer.

Before you turn in your exam, write your student ID number on all pages.

Student ID number:

1. Pareto Optimality [5pts]
Processors, as with all digital designs, exist at different points along the Pareto
optimal frontier curve for cost and performance. List and briefly discuss three
examples of processors in common use and describe approximately where they lie
on the curve and how and why they make a tradeoff between cost and performance.
Try to span a wide range of the tradeoff curve.

C

Per formance

Cost

(A) Low Cost and Low Performance: for example, calculators are very
cheap and do not require high processing power, and therefore lie in the ”A”
region.

(B) Medium Cost and Medium Performance: laptops and PCs are good
examples of medium-priced electronics with higher processing power than cal-
culators.

(C) High Cost and High Performance: super computers and quantum
computers are very expensive but deliver very high performance.

2. IC Costs [5pts]

You work at a company that plans to design and sell an ASIC. Your NRE costs are
$1M and your production costs per packaged IC is $10.

(a) You expect to sell 100,000 ICs at a price of $100 each. If you did, what would
be your profit per IC?

100 - 100,000 - 10 - 100, 000 - 1,000, 000

= $80 per chip

profit =
100,000

(b) You are also considering offering a FPGA version instead of ASIC. In this case,
NRE costs would be $100,000 with a $50 per part cost, and you would still
plan to sell the design at a price of $100 each. Would this option generate
more profit? Justify your answers.

Student ID number:

100 - 100,000 - 50 - 100, 000 - 100, 000

profit = = $49 per chip

100,000
At this volume, it is more profitable to go with the ASIC option.

3. Register Transfers [8pts|
In the circuit shown below, registers X0 through X3 hold the values a, b, ¢, d, respec-
tively. Register Y is uninitialized. All registers are equipped with a clock enable
input. Your job is to find the minimum number of cycles needed to reverse the
ordering of the values in the X registers. Show your work and your final answer.

SELO
ce 0 2
—1
00
X0 oL
10
ce 1
—— 11
X1
LA
ce 2
1
X2
LA
ce_ 3
1
SEL1
X3
2
LA
00 ce_Y
01 | |
Y
10 | |
o ~j/—sel2
11

We basically just need to swap X0 and X3, X1 and X2.

Y <= X0; X0 <= X3
Y <= X1; X3 <=Y
Y <= X2; X2 <=Y
X1 <=Y

4 cycles is needed.
5 cycles is also acceptable if you reason that the last cycle is for final register

Student ID number:

‘ update (or 4 clock edges).

4. Adder Logic Design [8pts]

An alternative way to implement the function of a full-adder cell is the following.
We introduce two intermmediate signals:

p=a®b
g=ab
and use them to generate the usual full-adder outputs:

r=p®cCi

Cout = g + PCin

Show that the logic functions of the two outputs is the same as those of the full-
adder presented in lecture.

Solution:

From lecture:
r=a®b®cy,

Co=ab+cip(a+D)

a b cpl|rT ¢ a b plg cnml|r C
0O 0 0[O0 O OO O0O|O0 O1]0 O
0O 0 1({1 0 O0OO0OO|0 1|1 0
0O 1 01 0 O 1 1[0 O01]1 O
o1 10 1 O 1 1|0 110 1
1 0 0|1 0 1 0 1/0 0|1 O
10 10 1 1 0 1/0 1 1]0 1
11 0|0 1 1 1 01 010 1
11 1)1 1 1 1 01 1|1 1

The truth tables yield the same results, so the logic functions of the two outputs
is the same as those of the full-adder presented in lecture.

5. Sequential Circuits [16pts]
Below are the interface specification and the detailed diagram for a sequential cir-
cuit.
(a) Briefly describe the function of the circuit. (What is it used for?)

(b) Draw the clock waveform and waveforms for X, Y, s, and load, to demonstrate
the circuit behavior. Assume that X =4/60110 and S = 2'b10.

(c) Write the Verilog generator description of the circuit where the width of X and
Y, and of S are parameterized. To help clarity, use a hierarchical description.

Student ID number:

load s

X —F ——Y

JAN
1

CLK

Top Level Circuit

load
s load
B =0
-1
CE
RTL Implementation
Solution:

(a) A shift register that performs arithmetic right shift s — 1 times.

Solution:

> W cnt_val[1:0]

©

module Q5 #(
parameter XW
parameter SW

o
N

Student ID number:

) (

input clk,

input load,

input [XW-1:0] X,
input [SW-1:0] s,
output [XW-1:0] Y
)

wire [SW-1:0] cnt_val, cnt_next;
wire cnt_ce;
REGISTER_CE #(.N(SW)) cnt (
.q(cnt_val),
.d(cnt_next),
.ce(cnt_ce),
.clk(clk));

wire [XW-1:0] Y_val, Y_next;
wire Y_ce;
REGISTER_CE #(.N(XW)) shift_reg (
.q(Y_val),
.d(Y_next),
.ce(Y_ce),
.clk(clk));

assign cnt_next = load 7 s : cnt_val - 1;
assign cnt_ce cnt_next != 0;

assign Y_next = load ? X : {X[XW-1], Y_val[XwWw-1:113};
assign Y_ce load | (cnt_next != 0);

assign Y = Y_val;

endmodule

6. FPGAs Logic Block [5pts] Using nothing other than 3-LUTSs, demonstrate how you
would construct a 6-LUT. Label your inputs zq, x1, ..., z5, and output as y.

Solution:

A 3-LUT can be used as a 2-to-1 MUX (2 input plus 1 input selection).

Two 3-LUT with a 2-to-1 MUX forms a 4-LUT — We need three 3-LUTSs to
build a 4-LUT.

Two 4-LUT with a 2-to-1 MUX forms a 5-LUT — We need two 4-LUT with
one 3-LUT to build a 5-LUT.

Two 5-LUT with a 2-to-1 MUX forms a 6-LUT — We need two 5-LUT with
one 3-LUT to build a 6-LUT.

Student ID number:

Therefore, we will need (3 x 2 + 1) x 2 + 1 = 15 3-LUTs to build a 6-LUT.

7. Boolean Logic [7pts]

For the following function expressed as a truth table:

a b ¢ d|f
0 00 010
0 00 1]1
0 01 010
0 0 1 11
01 0 011
0 1 0 170
0 1 1 0]-
0 1 1 11
1 0 0 0]-
1 0 0 1)1
1 0 1 010
1 01 1|1
1 1 0 01
1 1 0 1/-
1 1 1 01
1 1 1 110

(a) Express f in reduced product-of-sums (POS) form.

Solution:

00 01 11 10
ab

00 0 1 1 0

01 1 (E}\ 1 -
11 1 - 0) 1

10 - 1 1 0

f=+d)(b+c+d)(@a+b+d)

Student ID number:

(b) Express f in reduced product-of-sums (POS) form.

Solution:
cd
00 01 11 10
ab
00 0 1 1 0
01 1 0 1
11 ‘J - 0 h
10 - 1 1 0
f= (b+3)(5+d)(a+5+6)

8. Finite State Machines [6pts] We would like to design an FSM that accepts a string
of bits, one per clock cycle. After each group of three bits, the FSM outputs a 2-bit
integer that indicates how many 1’s were in that group of 3 input bits. Then it
keeps going with the next group of 3 input bits. (Don’t worry about minimizing the
number of states.)

(a) Draw the state transition diagram for a Mealy machine that implements this
function.

o

Student ID number:

reset

(b) Draw the state transition diagram for a Moore machine that implements this
function.

Solution:

9. Finite State Machines [5pts]

Write the Verilog to describe an FSM whose behavior is shown in the state transition
diagram shown below. Note that this machine has both Mealy and Moore outputs.

Student ID number:

0/0

1/0 ”n

Solution:

module FSM9 (
input clk,
input rst,
input in,

output out_moore,
output reg out_mealy

);
localparam SO = 2'b00;
localparam S1 = 2'b01;
localparam S2 = 2'b10;

wire [1:0] state_val;
reg [1:0] state_next;

.q(state_val),
.d(state_next),
.rst(rst), .clk(clk));

// Moore output: depends on current
// Mealy output: depends on current

// Just go with (*) for sensitivity
always @(*) begin
// Don't forget default assigment
state_next = state_val;
out_mealy = 1'b0;

case (state_val)

10

0/0

REGISTER_R #(.N(2), .INIT(S0)) state_reg (

state only
state and input

list

statements

Student ID number:

S50: begin
if (in == 1) begin
state_next = Si;
out_mealy = 1'bil;
end
end
S51: begin
if (in == 1) begin
state_next = S2;
out_mealy = 1'bil;
end
end
S2: begin
if (in == 0)
state_next = SO;
else
state_next = S1;
end
endcase
end
assign out_moore = (state == S2);
endmodule

10. One-hot Encoding [5pts]

Draw the circuit diagram that implements the FSM shown below using one-hot
state encoding. Minimize the number of logic gates.

0/0

S

1M1

0/0

1/0

11

Student ID number:

Solution:

in ——p——__) =0

51

U

out

11. Gate Delay [10pts]

Derive the propagation delay 7, for the tri-state inverter circuit (shown below),
based on the “in” input. Assume as we did in lecture that nfets (NMOS transistors)
are twice as strong as pfets (PMOS transistors) per unit width, and that we would
like to have balanced pull-up and pull-down delay. Leave your answer in terms of
the unit inverter delay, 7,0.

en —
— out

en —

1 131

To get the same C}, as an inverter we size the PMOS to be 2 and NMOS to be
1.

By inspection, the delay would then be twice that of the unit inverter since it

12

Student ID number:

drives the same capacitance but with twice the drive resistance.
T, = 27p0(1 + i)
~
Full derivation:

7= 0.69(2%)[31/1/@ +]

= 0.69%[61/[/7@ +201

= 0.69(3chg)[2 ; 23550]
g

= Tp0(2 + Qi)
v

12. CMOS Logic Gates [6pts]

Derive the static CMOS logic gate implementation of the exclusive-NOR function
of two inputs, a and b. (It’s exclusive-or with inverted output). You may assume
you have inverted and non-inverted inputs.

.

o4 of
4

Solution:

out

a a'

_|
b'—|_ b—l_

.

13. Process Scaling [5pts]

Consider the effect of Dennard Scaling on wire delay. In this problem we will assume
that all process dimensions, including wire thickness, scale down by a factor x as
proposed by Dennard.

13

Student ID number:

What would be the effect on the delay of long wires? Show your work and justify
your answer.

Solution:

The total resistance of the wire is

_pL

R, n

where A, is the cross sectional area of the wire. L scales by x and A, scales by
k2 since the wire thickness also scales so the new resistance is

L
R, =25~ Rk
W2
The total capacitance of the wire is
€A
Cp=—
d

where A is the area of the wire facing the ground plane or another wire. It can
be rewritten in terms of thickness (W) and length (L)

_GWL
- d

W, L and d all scale by k so the new capacitance is

Cu

WL
e—= (O,

K K
d
K

cl, =

K

Because wire delay is proportional to R!,C! and R, C] = Rwl{% = R, C,, then
wire delay does not change.

14. Logic Gates [5pts| 251A only — Optional Challenge Question for 151

Again consider the design of the exclusive-NOR gate. Assuming inverted inputs are
not available, but also that you are not restricted to static CMOS implementation.
What is the minimum number of transistors needed to implement this gate? Justify
your answer.

S

14

Student ID number:

_d
i

L

—out

b

:
|

This solution requires 8 transistors compared to the 12 required for the static
CMOS implementation.

15. Combination Logic [8pts| 251 A only — Optional Challenge Question for 151

Consider the design of a combinational logic block for equal compare of two N-
bit integers, A and B. Assume N is always a power of 2. You are allowed to use
inverters, and 2-input NAND, NOR, XOR, and XNOR gates. For this problem,
assume that all of these gates have delay = 1. Design a circuit that implements
the equal compare function and has minimal delay. Show your design for N=8. In
general, what is the delay of such a circuit?

For N =8&:

15

Student ID number:

A[0]
B[O]

A[l]
B[1]

A[2]
B[2]

A[3]
B[3]

A[4]
B[4]

A[5]
B[5]

A[6]
B[6]

A[7]
B[7]

HANARRY

In general you can build an N-bit comparator block with 1 stage of N 2-input
XNOR gates to compare each bit from A and B. You then need log,(N) stages
to build an N-bit NAND, and then finally an inverter for a total delay of

tqg=2+logy(N)

16

