
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS151/251A J. Wawrzynek
Spring 2021 3/11/21

Exam 1

Name:

Student ID number:

Class (EECS151 or EECS251A):

You have three hours to take the exam. This exam comprises a set of questions with 1 point per
expected minute of completion with a total of approximately 135 points. As with homework
problems, submit your solutions using Gradescope. At the end of the exam time, you will have
extra time to scan and submit your answers.

You are allowed to refer to your notes, the class lecture notes, and any other reference materials
that you have available. You are not allowed to speak or communicate with anyone on any topic
related to the exam during the exam period. After completing the exam, sign the following
statement attesting that you did not discuss the exam problems with anyone else. You may
either scan this page or copy the statement word-for-word.

I hereby declare that I have not spoken with nor otherwise communicated with anybody
regarding the content of this exam while taking the exam (except for course staff):

(sign here):

For each problem if you find yourself taking excessive time to work out a solution consider
skipping the problem or a fresh approach. Also, start by answering the easier questions
and then move on to the more difficult ones.

Neatness counts. We will deduct points if we need to work hard to understand your
answer.

Before you turn in your exam, write your student ID number on all pages.

1

Student ID number:

1. Tradeoffs [12 pts]

You’re working for an ASIC design company and responsible for a part of the
company’s latest chip design. You come up with a design shown in block diagram
below.

G
G

The blocks labeled G are combinational logic blocks and both implement the same
Boolean function. For your process, flip-flops have the following area and delay:

areaFF = 5µm2

τclk−q = τsetup = 10 ps

The area and delay of your G block is:

areaG = 40µm2

τG = 30 ps

Your boss tells you, thanks for the design, and asks you to make sure your imple-
mentation meets the following specification for total area and critical path delay:

Tmax = 80 ps

areamax = 80µm2

Your implementation of G comes from a circuit generator. You had tried a range of
parameters with the generator and discover that it can produce a family of designs
trading-off area for delay with the following values:

area (µm2) 10 20 30 40 50
delay (ps) 120 60 40 30 24

(a) Does your original design meet the specifications?

Solution:

No. The circuit as it is now will meet timing, but violates the area con-
straint. The two G blocks already contribute 80 µm2, so there is no room
left for the flip-flops.

(b) If not, can you come up with a new design that does? You are allowed to
pick different G generator parameters and rearrange the circuit, as long as you
maintain the same input/output functionality.

Student ID number:

Solution:

None of the other members in the generated design family will satisfy the
contraints with this circuit as-is, so we will need to do some retiming. To
relax the delay constraint per G block (and thereby allow us to use less
area per block), we can retime the second G block by pushing a register
to its inputs, as shown below.

G
G

Retime to here...

Retime to here...

G
G

Now that there is only 1 G block in the critical path, we can design them
to be just fast enough to meet the critical path requirement, which will
simultaneously minimize the area of the design. The slowest design that
meets timing has 60 ps of delay and takes up 20 µm2 of area, bringing the
total area to

6(5µm2) + 2(20µm2) = 70µm2

which meets the area constraint. Note that because of the retiming, there
is now 1 additional flip-flop that contributes to the overall area.

Student ID number:

2. FPGAs [15 pts]

(a) John is a theoretician at heart but works on FPGA architecture research. He
comes up with the following two formulas for expressing LUT area and LUT
delay as a function of N, the number of LUT inputs, for N ≥ 2. In the formulas
ka and kt are layout and process related constants.

Area = ka ⋅ 2
N

Delay = kt ⋅N

Are John’s formulas accurate? Explain. What are the constants, ka and kt,
meant to represent?

Solution:

The formulas are correct.

An N-LUT consists of 2N configuration bits (latches) and a 2N -to-1 MUX.
A 2N -to-1 MUX can be constructed from a binary tree of (2N - 1) 2-to-1
MUXes with a depth of of log2(2N) = N.

Assume the area of a config latch is al, and the area of a 2-to-1 MUX is
am, and the gate delay of a 2-to-1 MUX is d.

The area of an N-LUT is Area = al ⋅ 2N + am ⋅ (2N − 1) ≈ (al + am) ⋅ 2N (if N
is large enough)

The delay of an N-LUT is Delay = d ⋅N (the longest path delay – which is
the propagation delay from the latches to N levels of MUXes to the LUT
output)

Therefore, the area scales proportionally to 2N , and ka represents the area
of a config latch plus a 2-to-1 MUX. The delay scales proportionally to N ,
and kt represents the gate delay of a 2-to-1 MUX.

The following figure shows how an N-LUT is typically built

Student ID number:

(b) Consider the problem of mapping an arbitrary function of P inputs using only
3-LUTs. Without knowing details of the function, write a formula that ex-

Student ID number:

presses the least number of 3-LUTS needed to implemement any arbitrary
function. Assume P ≥ 3. Explain your approach and show your work.

Solution:

i. Divide the function truth table (2N rows) into group of 8 rows each (3
input bits)

ii. Assign one 3-LUT per group ⇒ 2P /8 = 2P−3 3-LUTs needed

iii. Use a tree of 2-to-1 MUXes implemented using 1 3-LUT for each 2-to-1
MUX. The tree has 2P−3 inputs ⇒ a total of 2P−3 − 1 3-LUTs needed

iv. Total number of LUTs for both parts = 2P−3 + 2P−3 − 1 = 2P−2 − 1

The following figure shows how we can build a P-input function (or P-
LUT) from 3-LUTs. The blue 3-LUTs are used to implement logic, and
the red 3-LUTs are used to implement 2-to-1 MUXes.

Student ID number:

3. Verilog [25 pts]

Consider the design of a simple n-bit wide computation engine that accepts and ex-
ecutes exactly one instruction per clock cycle. At the top level the engine comprises
a controller and a datapath, as shown below.

Controller

instruction

6 n

Datapath

data_in

Details of the datapath are shown below. The register file (regfile) has asynchronous
read and synchronous write.

n

n n

n

2

n

10 10

wen
din

dout

addr

BselAsel

Aen

ALUop

Ben

data_in

ALU

Reg�le

A B

Student ID number:

The engine has an instruction set with only 6 instructions, described below. All
instructions use the same format shown here.

Instruction Format:

| opcode | reg |

5 3 2 0

<- bits ->

Instruction Definitions:

opcode | action

0 regfile[reg] <- A + B

1 regfile[reg] <- A - B

2 regfile[reg] <- A XOR B

3 regfile[reg] <- A NAND B

4 B <- regfile[reg], A <- datain

5 A <- regfile[reg], B <- datain

Assume that an external circuit presents one instruction per cycle to the engine
and holds it constant throughout the cycle.

Your job is to write the Verilog specification for four modules, the ALU, the datap-
ath, the controller, and the engine. Remember, no register inference—use register
instantiation. Also, you have available to you a predefined register file generator
with the following definition:

module regfile (

clk , // system clock

din , // data input for writes

dout , // data output for read

wen , // write enable for synchronous write

a // address in register for write

);

parameter N; // register width

parameter M; // number of registers

parameter AW; // width of address in bits

Solution:

// ALU

module ALU #(parameter N = 32) (

input [N-1:0] A,

input [N-1:0] B,

input [1:0] ALUop,

output reg [N-1:0] ALUout

);

Student ID number:

always @(*) begin

case (ALUop)

2'b00: ALUout = A + B;

2'b01: ALUout = A - B;

2'b10: ALUout = A ^ B;

2'b11: ALUout = ~(A & B);

endcase

end

endmodule

// datapath

module datapath #(parameter N = 32, parameter M = 8,

parameter AW = 3) (↪

input clk,

input [N-1:0] data_in,

input [AW-1:0] addr,

input wen, Asel, Bsel, Aen, Ben,

input [1:0] ALUop

);

wire [N-1:0] din;

regfile #(.N(N), .M(M), .AW(AW)) RF (

.clk(clk),

.din(din),

.dout(dout),

.wen(wen),

.a(addr),

);

wire [N-1:0] A_next, A_value;

wire A_ce;

REGISTER_CE #(.N(N)) A_reg (

.clk(clk),

.d(A_next),

.q(A_value),

.ce(A_ce)

);

wire [N-1:0] B_next, B_value;

wire B_ce;

REGISTER_CE #(.N(N)) B_reg (

.clk(clk),

.d(B_next),

.q(B_value),

Student ID number:

.ce(B_ce)

);

wire [N-1:0] ALUout;

ALU #(.N(N)) alu (

.A(A_value),

.B(B_value),

.ALUop(ALUop),

.ALUout(ALUout)

);

assign A_next = (Asel) ? dout : data_in;

assign A_ce = Aen;

assign B_next = (Bsel) ? dout : data_in;

assign B_ce = Ben;

assign din = ALUout;

endmodule

// controller

module controller #(parameter AW = 3) (

input [5:0] instruction,

output reg wen, Asel, Bsel, Aen, Ben, ALUop,

output [AW-1:0] addr

);

assign addr = instruction[2:0];

wire [2:0] opcode = instruction[5:3];

always @(*) begin

Aen = 1'b0;

Ben = 1'b0;

Asel = 1'b0;

Bsel = 1'b0;

ALUop = 2'b00;

wen = 1'b1;

case (opcode)

3'd0: begin

ALUop = 2'b00;

end

3'd1: begin

ALUop = 2'b01;

end

3'd2: begin

ALUop = 2'b10;

Student ID number:

end

3'd3: begin

ALUop = 2'b11;

end

3'd4: begin

wen = 1'b0;

Aen = 1'b1;

Ben = 1'b1;

Asel = 1'b0;

Bsel = 1'b1;

end

3'd5: begin

wen = 1'b0;

Aen = 1'b1;

Ben = 1'b1;

Asel = 1'b1;

Bsel = 1'b0;

end

// can also have a default case statement here

// if we do not specify the default assignments

// before the case block

endcase

end

endmodule

// engine

module engine #(paramter N = 32, parameter M = 8, parameter

Aw = 3) (↪

input clk,

input [N-1:0] data_in,

input [5:0] instruction

);

wire [AW-1:0] addr;

wire Asel, Bsel, Aen, Ben, wen;

wire [1:0] ALUop;

datapath #(.N(N), .M(M), .AW(AW)) dp (

.clk(clk),

.data_in(data_in),

.addr(addr),

.wen(wen),

Student ID number:

.Asel(Asel),

.Bsel(Bsel),

.Aen(Aen),

.Ben(Ben),

.ALUop(ALUop)

);

controller #(.AW(AW)) ctrl (

.instruction(instruction),

.addr(addr),

.wen(wen),

.Asel(Asel),

.Bsel(Bsel),

.Aen(Aen),

.Ben(Ben),

.ALUop(ALUop)

);

endmodule

Student ID number:

4. CMOS Gates [20 pts]

In this problem you are asked to design and analyze a 4-input static CMOS gate
that implements:

f = ab + cd

Your approach will be to use a composition of a single gate that implements f
followed by an inverter.

(a) Show your circuit diagram for f .

Solution:

a

a

c

c

b

b

d

d

f

VDD

VSS
(b) Size the transistors in your f gate so that each input has the same capacitance

as a unit sized inverter, and derive the equation for worst case delay. Assume
that the resistance per unit width for pFETs is twice that of nFETs. Also size
the transistors so that the rise and fall times are equivalent.

Solution:

Student ID number:

a

a

c

c

b 2W 2W

2W

W

W W

2W

2W

W

Wb

d

d

f

VDD

VSS
The worst-case delay is caused by having two devices in series from ei-
ther rail to the output. This path is therefore the path we will balance.
Since both the worst-case pull-up and worst-case pull-down have the same
number of devices in series, the ratio of PMOS to NMOS device sizes will
be the same as the ratio of their channel resistances. The PMOS devices
have twice the resistance of the NMOS devices, so they must be double
the width. By making all the PMOS devices 2W and the NMOS devices
W, we automatically have the same input capacitance as a unit inverter,
so we are done.

(c) Now, assuming that your output inverter is unit sized, derive a delay equation
for the composite gate.

Solution:

The inverter delay can be found directly from the lecture slides,

tp,inv = tp0(1 +
f

γ
)

For the f gate,
Cint = 6WγCG

Student ID number:

tp,f = 0.69(
2RN

W
)(Cint +CL)

= 0.69(
2RN

W
)(6WγCG +CL)

= 0.69(
2RN

W
)(3WγCG)(2 +

CL

3WγCG

)

= tp02(2 +
CL

3WγCG

)

= tp0(4 +
2CL

3WγCG

)

= tp0(4 +
2f

γ
)

Since the inverter is unit-sized, it presents a fanout of 1 to the complement
gate, so the final delay of the complement gate is

tp,f = tp0(4 +
2

γ
)

Summing this with the inverter delay,

tp = tp0(5 +
2

γ
+
f

γ
)

The fanout-dependent delay is therefore entirely from the last stage (in-
verter), and the internal load of the inverter input turns the fanout-dependent
delay of the complement gate into a constant delay.

(d) You realize that you might be able to scale up the size of the output inverter
for better performance—a 4X inverter seems like a good choice. Derive a delay
equation for this new composite gate.

Solution:

Sizing up the inverter 4x does not affect the delay of the gate, so the
inverter delay remains the same

tp,inv = tp0(1 +
f

γ
)

Since the inverter is 4x sized, it presents a fanout of 4 to the complement
gate, so the final delay of the complement gate is

tp,f = tp0(4 +
8

γ
)

Student ID number:

Summing this with the inverter delay,

tp = tp0(5 +
8

γ
+
f

γ
)

251A only — Optional Challenge Question for 151

(e) An alternative way to implement this function is with NAND gates. Draw
the circuit diagram for this approach and derive the delay equation with input
capacitance the same as a unit inverter. Now consider scaling up the output
stage. What would be its optimal size, assuming our composite gate has fanout
of 4?

Solution:

This gate can be built as shown below,

a
b

c
d

f

The delay of a 2-NAND is, from the lecture,

tp = tp0(2 +
4f

3γ
)

Since each NAND is loaded by another NAND of unit size, the total delay
is

tp = tp0(4 +
4

3γ
+

4f

3γ
)

If this gate is now driving a 4x larger load (fanout of 4), then it would be
optimal to distribute the fanout equally on all stages,

f =
√

4 = 2

So the second NAND is 2x larger, and the overall delay is

tp = tp0(6 +
8

3γ
+

4f

3γ
)

Student ID number:

a
b

c

x1

x1

x2

d

f

Since the last stage has fanout of 2,

tp = tp0(6 +
16

3γ
)

Student ID number:

5. Sequential Circuit Design [15 pts]

Some particular sequential circuit has a 3-bit output labeled [x2, x1, x0]. It outputs
a new value on each clock cycle in the following repeating sequence:

3, 2, 5, 7, 6, 1, 4, 3, 2, ...

Using flip-flops and 2-input ANDs and ORs, and, if needed, inverters. Derive a
circuit with this behavior. Optimize for cost by trying to minimize the number of
logic gates. Show your work. Hint: think about this as a FSM.

Solution:

In binary, the sequence, encoded as {x2, x1, x0}, is 011, 010, 101, 111, 110,

001, 100, 011, 010.

If we approach the problem as a binary-encoded FSM, we should try to come
up with as simple of a representation as possible for each of x0, x1, and x2.
To do so, we can use a K-map to write the SOP form of each bit. For each
bit, we fill each K-map entry with 1 or 0 depending on the value of the bit the
cycle following the 3-bit value encoded by the K-map entry. For example, in
the second cycle, bit x0 is 0, so the entry for 011, the previous value, in the
K-map for x0 would be 0. Here are the K-maps:

From each K-map, we can write an SOP expression:

x0 = x2x̄1 + x̄0

x1 = x2x̄1 + x1x0

x2 = x̄1x0 + x2x0 + x̄2x̄0

Student ID number:

Based on these expressions, we can represent each bit with a flip-flop, and
assign the input of each flip-flop with some combinational logic. Note that for
neatness, we did not use the minimal number of inverters in this diagram.

Alternatively, we can represent the 7 different states in the ”FSM” with a one-
hot encoding, where each state, represented by a flip-flop, simply feeds into the
next, and the output is determined by which flip-flop holds a 1. This increases
the number of flip-flops necessary but decreases the amount of combinational
logic.

Student ID number:

Student ID number:

6. Finite State Machine [12 pts]

Draw the state transition diagram representing the behavior of the circuit shown
below. The flip-flops reset to 0.

in

out

rst

rst

Solution:

To understand the function of the FSM and find its state encoding, we first
write a boolean expression for each state bit, based on the circuit. Call the
output of the top flip-flop s[0], and the output of the bottom flip-flop s[1].

s[0] = !in & s[0] | in & s[1]

s[1] = !in & s[1] | in & !s[0] & !s[1]

From these expressions, we know that the FSM is binary-encoded, since it is
possible for for s[0] and s[1] to both be 0 or both be 1 at the same time. Using
these expressions, we can draw 4 states and their transitions. For example, if
{s[1], s[0]} = 2’b00 and in = 1, we know that the next value for {s[1],
s[0]} is 2’b10.

We also see that the output is a function of the current input, so we know the
FSM is a Mealy machine. From the circuit, we can construct an expression for
the output of the FSM at each transition:

out = in & s[0] | s[1]

Finally, we should always move to state 00 if rst is held high. Given all the
information above, we draw the following diagram. Note that state 11 can be
omitted.

Student ID number:

Student ID number:

7. Layout [15 pts]

Consider the layout shown below.

(a) Extract the transistor level circuit diagram and sketch it.

(b) Write an Boolean expression for its function.

(c) Is there a common name for this function?

Solution:

(a) The devices are extracted as shown below,

Student ID number:

The schematic is as follows,

a

a

b

b

b

b

c

c

x
a

c

VDD

VSS

a

c

(b) This circuit implements the Boolean function,

x = ab + ac + bc

Student ID number:

Alternatively, this function can also be implemented as

x = (a + b)(b + c)(a + c)

These functions are logically equivalent.

(c) This circuit implements a 3-input majority vote function.

Student ID number:

8. Boolean Algebra [12 pts]

Consider the Boolean expression for some function:

y = abcd′e′ + f

(a) The inputs to a circuit for this function are the signals, a, b, c, d, e,&f , none of
them are available in inverted form. Draw a circuit for y using only 2-input
AND and OR gates and inverters that minimizes the worst case path delay.
For this problem, assume that all gates and inverters have the same delay.

Solution:

To minimize path delay, we use a binary tree-like structure.

(b) Convert the circuit to one with the same function, made up of only 2-input
NAND and NOR gates.

Solution:

One method we can use to convert the circuit from part (a) is to convert the
output gate from an OR to a NAND with inverted inputs. From there, we
”push” the inverted inputs back. We continue this process, progressively
moving back towards the inputs, until no AND/OR gates remain. Below
is the circuit we arrive at following this solution.

Student ID number:

(c) Write a Boolean expression for the NAND/NOR solution.

Solution:

Expression derived from NAND/NOR gates:

((((ab)′ + c′)′(d + e)′)′f ′)′

(d) Using Boolean algebra show that your NAND/NOR algebraic expression is
equivalent to y above.

Solution:

Simplify the above using De Morgan’s Law:

((((ab)′ + c′)′(d + e)′)′f ′)′

= (((ab)′ + c′)′(d + e)′) + f

= (((ab)c)(d′e′)) + f

= abcd′e′ + f

Student ID number:

Thursday 18th March, 2021 18:40

