
EECS 151/251A
(Verilog Tutorial)

Authors: Kevin Anderson and Vignesh Iyer (Spring 2024)
 Rahul Kumar Yukio Miyasaka (Fall 2023)

Contents
● HDL (Verilog vs System Verilog vs VHDL)

● How should think when writing Verilog?

● Wire vs Reg

● Must declare signal before use

● Inferring registers

● Define multiple signals of the same type

● Literals

● Structural vs. Behavioral

● Case vs. If

● Continuous Statements vs. Always Block

● Modules + Instantiations

● Parameters (Generators)

● Named Ports

● Code Structure

● Finite State Machine

● Comments

● Synthesizable Constructs

● Testbenches

● Advice + Tips

● Signal naming

● Each signal definition on new
line

Acknowledgement: Materials borrowed from previous semesters

Hardware Description Language (HDL)
● What is HDL?

● Originally designed to describe how digital circuits work

● Morphed into a language which can be used to generate digital circuits

● HDLs: VHDL (1980’s), Verilog (1984), System Verilog (2002)

● VHDL: verbose, very explicit syntax, largely supported by CAD tools, used
in Europe and government

● Verilog: simpler, widely supported by tools, used in industry

● System Verilog: built off Verilog, objects, structs, academia and industry

● We use Verilog in this class!

Structural vs Behavioral

● Verilog written with explicit
instantiations of primitives such as
gates and transistors

● Mirrors a true digital circuit. Create
gates and logic. Wire logic together

● Verilog written to describe the

behavior of a digital circuit without
explicit instantiation of gates

● CAD tools will infer the circuit which
implements the logic described

Digital circuit borrowed from: http://tinyurl.com/42zpe5yk

Think in Hardware!
● Writing HDL is not equivalent writing high-level programming language

● Hardware executes in parallel, so think in parallel

● Organize your code! And put comments!

● Readability over succinctness, verbosity for clarity
● One liners look great, but if they obfuscate the intent then you have failed as a digital designer

The Basics

Nets
● Signals are called nets in Verilog
● Nets must be declared before use! Can declare multiple nets of same width simultaneously
● All nets have a data type and bit width

○ If bit width not explicitly given, then assumed to be single bit
● Two main net data types: wire and reg
● Specific rule for write net (to avoid multidriven net error) and read from limitlessly
● Can have values: 1, 0, X (undefined), Z (high-Z)

wire

● Used in continuous assignment only

● Conceptually, is always considered to be a
wire connecting two logic elements

reg

● Used in procedural assignments only (i.e.
always blocks, initial blocks, function, task)

● Can represent a register or a wire. It all
depends on the context!

wire

Nets (Examples)
reg

Multi-Bit Nets

● Define width with MSb and LSb; width = (MSb – LSb) + 1

● Syntax (two options):

1. <net_type> [MSb :LSb] <net_name>;

2. <net_type> [LSb : MSb] <net_name>;

● Conventions

○ Lowest index should be 0

○ Most digital designers prefer [MSb : LSb] style

● Index extract a single bit (ex. tmp[0])

● Perform a slice to extract a range of bits a (ex. tmp[i:j]);

● When connecting multi-bit nets (esp. inputs or outputs), the bit-
widths of the nets must match!

Examples:

Note only one
bit is assigned

Net Data Type

● Nets also have data type keyword: signed and unsigned

● unsigned signifies the net represents an unsigned value

● signed signifies the net represents a signed 2’s complement value

● Use system task $signed and $unsigned to convert back and forth respectively

○ The underlying bit representation to not change, only the interpretation
during arithmetic operations

Wire vs. Reg
● Rules for picking a wire or reg net type:

○ If a signal needs to be assigned inside an always block, it must be declared as a reg.
○ If a signal is used in a continuous assignment statement, it must be declared as a wire.
○ Module input and output ports are implicitly given wire type; if any output ports are assigned

in an always block, they must be explicitly declared as reg

● How to know if a net represents a register or a wire?
○ A wire net always represents a combinational link
○ A reg net represents a wire if it is assigned in an always @(*) block
○ A reg net typically represents a register if it is assigned in an always @(posedge/negedge

clock) block (tool synthesis process determines if reg net becomes a register)

Multidimensional Arrays
● Multidimensional arrays are possible, but should be used sparingly if at all

● Ports should not be 2D arrays!

● Most common is 2D array

○ If type reg, usually means a memory

○ If type wire, usually means a collection of buses

● Syntax: (reg/wire) [ELEMENT_WIDTH-1:0] <name> [DEPTH-1:0];

○ Example:

EECS 151/251A Specific (John W Style)

● The reg net example from slide 5 uses “inferred
registers”; the synthesis tool infers whether the
net should be a register.

● Synthesis tools define specific constructions to

explicitly specify register creation

● In this class, we provide a register library
EECS151.v follow the convention for our
synthesis tool

● Whenever you need a register, you have to
instantiate one from the library

Specification:

● Stores an N-bit value
● Outputs the value as q
● At each positive edge of clk,

○ Resets to INIT if rst
○ Updates to d if !rst & ce (clock enable)
○ Hold the value otherwise

Literals
● Verilog defines a particular way of specifying literals

○ Syntax: [bit width]'[radix][literal]

● Radix can be
○ b (binary)

○ d (decimal)

○ h (hexadecimal)

○ o (octal)

● Examples: 1’b1, 3’b101, 6’d6, 4’hF, 5’o2
● It is critical to match bit widths for operators and module connections,

do not ignore these warnings from the tools

Literals

● Literals can be defined without specifying width and radix
○ This is frowned upon; verbosity for clarity

○ Tool will assume decimal radix and infer width (truncate or extend as necessary)

○ Ex: assign a = 1;

● A convenient shorthand is to not specify the width
○ Tool will infer width of signal, truncate and extend as necessary

○ This is very convenient for certain cases like zeroing out a register

○ Ex: reg0 <= ‘b0;

If-Else

● Syntax: if <condition> begin end else begin end
● if-else statements represent a mux in hardware
● Be careful nesting! This creates long delay in chain of muxes

Example: if without else Example: if-else Example: if-else if with nested if

Case

● Syntax: case (<condition>) begin endcase
● case statements represent a decoder
● Select a condition by patterning matching value of an input,
● Ensure every input combination has an assignment

○ Having a default case ensures this

If-Else vs Case

● if-else statements with many conditions or nested if-else statements
will likley synthesize to a chain of multiplexers

○ This leads to bad timing. Signal must propagate through series of muxes

● A case statement inherently represents a decoder

● Decoders are more efficient as far as timing, therefore favor the use of
case statements over long chains of if-else statements

○ Plus it looks nicer J

Procedural Assignment
● Procedural assignments are for “triggered” events (that happens if this event occurs)

○ always blocks
○ initial blocks
○ function
○ tasks
○ Multiline blocks have enclosures begin and end

● Only reg type signals can be used in procedural assignment

● You cannot assign the same reg net in different procedural blocks!

● Use procedural assignments for FSMs, counters, or succinct combinational logic.

always @(*) Block
● Syntax: always @(<sensitivity list>)

● Can represent both sequential and combinational logic

● Must include begin and end keyword for multi-line blocks

● The sensitivity list ”trigger” execution of the always block when any
of the included nets change. Sensitivity list must include all nets on
RHS of assignments

● Must include all nets involve in logical operation or
assignments

● Best practice is to use wildcard ‘*’ instead of listing each
individual signal. Tools interpret this as all nets involved in
operations or assignments

● Another common sensitivity list is always @(posedge clk)

Example:

always @(*) Block: Blocking vs Non-blocking Assignments

● This is fundamental to Verilog!

● There are two types of assignments within procedural blocks:

○ Blocking Assignments (‘=‘) – assignments are evaluated sequential (i.e. assignments happen sequentially)

○ Non-blocking Assignments (‘<=‘) – assignments are evaluated in parallel (i.e. assignments occur simultaneously)

● DO NOT mix non-blocking and blocking assignment in always block. Error prone!

● Which to use? Depends on the intent

○ Must use non-blocking for combinational logic

○ For sequential logic, it depends on the code, but often non-blocking

initial Block

● Syntax: initial

● Code first executed, runs until timing event

● Timing events use # (<delay(integer)>) or @(<event>)

● Not synthesizable! Simulation only!

● Used to set initial values of nets and sequence events in
testbenches

● Multiple initial blocks allowed, but often confusing

Example:

function and task
● functions and tasks are NOT necessary for EECS151/251A, but common in Verilog

● Both functions and tasks represent callable repetitive logic, but have significant
differences (some listed below):

1. Tasks can have timing delay

2. Tasks can have multiple outputs, functions can only have one output

Examples borrowed (inspired) from here

http://tinyurl.com/6fbtwh2a

Continuous Assignment

● Continuous assignments use the assign statements

● Example:

● Nets with continuous assignments always driven by the given or expression

● Preferred/primary way to represent combinational logic

● Only wire type signals can be used in continuous assignments

Assign Statement

● assign statements cannot be used inside procedural blocks

● Wires can be assigned to logic equations, other wires, or operations on other wires

● The LHS of the assign statement must be a wire, and cannot be an input wire

● The RHS of the assign statement can be any expression created from Verilog

operators and wires

Conditional (Ternary) Operator
● Syntax: <condition> ? <expression if condition is true> : <expression if condition is false>

● Can be used in procedural and continuous assignments (more often in assign statements)

● Can be nested to create chain of if-else logic

● Example 1: a circuit that saturates at 10

● Example 2: comparator circuit which outputs: 0 if (a == b), 1 if input (a < b), or 2 if input (a > b).

Operators
● Verilog contains operators that can be used to perform arithmetic, form logic expression,

perform reductions/shifts, and check equality between signals.

Operator
Type Symbol Operation

Performed

Arithmetic

+ Add
- Subtract
* Multiply
/ Divide

% Modulus

Logical
! Logical

negation
&& Logical and
|| Logical or

Operator Type Symbol Operation
Performed

Shift

<< Shift left logical

>> Shift right logical

<<< Arithmetic left
shift

>>> Arithmetic right
shift

Concatenation {} Join bits
Replication {{}} Duplicate bits

Indexing/Slicing [MSB:LSB] Select bits

Operators (Examples)

● An example using multiple operators

Verilog Modules
● Modules are units of hardware that perform a specific function

● Modules form a design hierarchy

● A module declaration includes parameter declaration, port declaration, and code
to implement the desired functionality.

● Module ≠ Class. Module ≠ Function

● Good Convention: One module per file and the module name must match the
file name!

Verilog Modules
● Signals declared inside module are internal only. Only values on ports are visible

to the outside world

● Parameters are module-level variables that can be overwritten during instantiation

○ This provides flexibility, most common modules are parameterized; parameters are the basis of generators

○ Usually integer types

○ Example:

● Local parameters are constants; like parameters but cannot be overwritten

○ Often used to declare FSM states

○ Example:

● Instantiation is creating a unique instance of a module

○ Modules can be instantiated in another module

○ Named ports are used during instantiation so order during instantiation does not matter

Verilog Modules
● Ports allow inter-module communication or I/O to outside world

● Ports for a module are declared in the port declaration

● Each port has a name, type, and width (input, output, or inout)

○ Names cannot be duplicated

○ Ports without explicit type are assumed to be wires

○ Ports without explicit width are assumed to be a single bit

○ Ordering of port list does not matter; conceptually related ports often grouped together
(i.e. ports connecting to the same module are consecutively listed)

Verilog Modules
● General instantiation structure:

module <module_name> <instance_name> [<parameters (optional)>] <port_list>

 <internal signals & logic>

endmodule

Verilog Modules
● Every Verilog design has a top-level module which sits at the highest level of the

design hierarchy

● The top-level module defines the I/O for the entire digital system

● All the modules in your design reside inside the top-level module

Both implementations are valid and equivalent!

Implementation 1: Implementation 2:

Important Topics

Finite State Machines (FSM)
● FSMs orchestrate a sequence of events throughout time

○ Must use registers (at minimum a register to track the state)

● State diagrams visualize describe FSMs

○ States are typically gray coded

○ Arrows between state represents transition
■ Transitions without conditions are taken regardless

■ Transitions with conditions are only taken if condition is met

● Two defined types (difference is when the output changes)

○ Moore: the output is dependent solely on the state

○ Mealy: the output is dependent the input and the state

○ In practice, many FSMs are a mixture of both

Finite State Machines (FSM)
● States are created as localparam or with define statements

○ Some engineers like define statements because they use a single header file with
constants used in the design

● Two styles for FSM in HDL (both are functional equivalent and reduce to similar logic)

1. Two process (one sequential, one combinational)

2. One process containing both sequential and combinational logic

Finite State Machines (FSM)

● Moore FSM

● Two process style

Finite State Machines (FSM)

● Mealy FSM

● Single process style

Multiple Net Assignments

● Cannot have multiple continuous

assignments for same wire net
● Can assign different values to reg

net at different points in procedural
block. Last assignment taken.

● Useful to handle complex conditions

Loops

● for and while loops exist but only to be used in testbenches

○ Loops don’t exist in hardware

○ Other ways to iterate in hardware (e.g. FSM or counter)

● for loops more common (and safer) than while loops

Generate Statements
● generate statements allows you to create copies the same hardware

● Can you use generate on for loops, if statement, and case statement

● generate statements are not loops

● Must create a genvar variable to use generate for

generate for generate if generate case

Generators
● “Generator” = parameterized Verilog module

● Typically, uses generate statements

● generate for and generate if are most
common

● Example: A shift register with a DEPTH and
BIT_WIDTH parameters

Example:

Inferred Latches
● A latch is a combinational circuit that does not change with

clock

● Latches are created two ways:
1. no default case

2. missing net in sensitivity list

● Your design should not contain latches unless intended

● Unless for specific cases, latches are frowned upon

○ No sense of timing

○ Prone to bugs

○ The realized hardware might not even work consistently

Example:

Explanation: If input 2’b10 or 2’b01
happen, then the output is 1

forever

Interfaces
● Definition: ports at boundary of module to communicate to another module

● Technically, the ports of another module are an “interface”

● However, “interface” typically implies an industry standard protocol
○ Examples: Ready-Valid, AXI-Interface APB-Interface

Common Structures
● FIFO*

● Edge-Detector
● Shift Register*
● Counter*
● Accumulator*
● Pipeline*
● Barrel Shifter
● Carry-Save Adder (CSA)
● Booth Multiplier

* means know how to create this structure and how they are used

Synthesizable Verilog
● Synthesis is the process of transforming user written Verilog into an optimized Verilog

netlist (structural) performed by a CAD tool (ex Cadence Genus)

● Not all Verilog is synthesizable!

Structure Use Alternative

Initial value of nets
(ex. wire clk = 1’b0)

Sets initial value of nets Use a reset condition in a procedural block

Initial block Testbenches and simulation Use a reset condition in a procedural block

Timing Delays and Events Testbenches and behavioral
simulations

Generate a clock and count cycles

Loops Testbenches and behavioral
simulations

A FSM

(Some) System Tasks
($finish, $display, $fork, $join, etc)

Ease of use N/A

Tips/Advice
● Think before you code: “How would I implement this in hardware?”

● Need help? Ask for it

● If it looks crazy, then there is typical a better way

● Every register should have a reset

● Always define multibit nets in [MSb:0] format

● DO NOT add long chains of ternary operators

● generate statements are overrated. Use only when necessary

● Waveforms are better than many $display calls

● Active high reset for FPGAs, active low for ASIC (power consumption)

Tips/Advice
● One port per line

● One net declaration per line

● Timing, timing, timing…timing*

○ If I present a value to a flip-flop input at the clock rising edge, then the flip flop
output will not be that value until the next cycle

Code Organization

● Consistent indents or else…

● Put block comments

○ At the top of the file list a description of the module or logic in the file

○ Some structures are common, others are not. For structures which are not put a block

comment explaining the intent (ex. accessing a range of bits in a multibit net which
represents a field, pipeline stages)

● Verilog has little constraint on placement of declarations and definitions. Therefore, it is
your responsibility to enforce code structure. Code must be logically organized!

Common HDL Organization Styles
● Group everything related to perform subfunction (net

declaration co-located to procedural block or
continuous assign)

● Group code by kind: nets, function, instantiations, etc

wire wire0;
wire wire1;
reg [1:0] reg0;
wire wire2;
wire [3:0] wire3;

always @(wire0, wire1) begin
 reg0 <= {~wire1, wire0};
end

assign wire2 = 1’b1;
assign wire3 = 4’d5’

wire wire0;
wire wire1;
reg [1:0] reg0;
wire wire2;
wire [3:0] wire3;

always @(wire0, wire1) begin
 reg0 <= {~wire1, wire0};
end

assign wire2 = 1’b1;
assign wire3 = 4’d5’

wire wire2;
wire [3:0] wire3;

…

Kevin’s Biased Opinion
● Group code by kind: nets, function, instantiations, etc

wire wire0;
wire wire1;
reg [1:0] reg0;
wire wire2;
wire [3:0] wire3;

always @(wire0, wire1) begin
 reg0 <= {~wire1, wire0};
end

assign wire2 = 1’b1;
assign wire3 = 4’d5’

Simulation

Simulation

● Simulation is more important in hardware than in software because once it’s made you
can’t change it

● There are commercial and open-source tools to perform Verilog simulation

● Different forms of simulation: Unit Testing, Full Design test, Verification

○ In this course, we focus on unit and full design testing. This are not the exhaustive
test, but give some confidence in the design and therefore a necessary skill

Testbench
● Testbenches are Verilog modules which instantiate your DUT

to drive its inputs and verify its outputs (functional testing)

● Testbenches have no inputs or outputs

● Things to have:

1. Simulated clock

2. initial block for driving input for given test cases

3. Instantiated DUT

4. Process to verify outputs or print to console

Testbench
● Clock:

○ Define localparam for clock period

● Nets:

○ Create reg nets for DUT inputs, connect to DUT, and drive them in initial block

○ Create wire nets for DUT output, connect to DUT, and verify outputs in process

● Initial block:
○ Always assert reset first
○ Begin with system calls (if necessary) to record waveforms (ex. $dumpfile(“dump.vcd”);

$dumpvars;)
○ If DUT is synchronous, driving inputs of negative edge ensures DUT captures data of

rising edge
○ Have test cases separated by a delay or timing event
○ End with $finish to end simulation

Testbench
● Verify Outputs

○ Create always block (clocked, or triggered off DUT output valid)
○ Ensure check is synchronized with DUT

■ Method 1: Verify output on negative following output present at port
■ Method 2: Use combinational always block with DUT valid signal
■ Method 3: Check output immediate next cycle (output will be present at

rising edge)

○ Either hardcode expected result, generate expected results dynamically, or
read from file ($readmemh)

Testbench Template
● No ports
● Timescale declared at the top of the file
● clk is simulated with localparam and is initialized
● initial block to execute sequence of test cases

○ rst is asserted first for a couple of cycles

○ Ends with a $finish system call

○ Timing event: #(4*CLK_PERIOD)

○ Separate test cases with timing events for
synchronization

● Clocked process (always block) to verify DUT outputs
(can be combinational if DUT outputs signal indicate
output is valid)

Printing Signals

● Use the $display system task: $display("format string", values);
○ Example: $display("in: %b, out: %b, expected: %b", in, out, expected);

Examples

Example: 1-bit Shift-Register

Specification:

● A shift-register for single bit values

● Parameterized to be N registers deep

● Output is the value of each register

Example: 1-bit Shift-Register

Verilog Implementation:

Example: Heater Moore FSM
Specification:

● A heater which blows hot air when turned on. The heater starts
off, no hot air. It has three buttons which control the actions of
the heater. These buttons are inputs to our FSM. A single bit
represents whether the heater is blowing hot air is the output.

● Inputs:
○ pwr_on – turn heater on
○ incr – to increase temperature
○ decr – to decrease temperature

● Outputs

○ air – asserted if heater is on

● States:
○ IDLE – heater is off, not air is blowing
○ HEAT – heater is on, but not changing temperature
○ INCR – heater is on and increasing temperature by 1°F
○ DECR – heater is on and decreasing temperature by 1°F

State diagram for our example FSM

Example: Heater Moore FSM

Example: OAI

EDA Playground (https://www.edaplayground.com/)
● Free web-based simulator
● Built-in waveform viewer
● HIGHLY recommended for homework 2!

● (Select Icarus Verilog 0.9.7 for simulator)

OAI design and testbench:
https://www.edaplayground.com/x/Egiz

https://www.edaplayground.com/
https://www.edaplayground.com/x/Egiz

Resources

● IEEE Standard for Verilog Hardware Description Language
● Finite State Machines
● EDA Playground

https://ieeexplore.ieee.org/document/1620780
https://inst.eecs.berkeley.edu/~cs150/sp12/resources/FSM.pdf
https://www.edaplayground.com/

